
Simulink® Design Optimization™
Reference

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Design Optimization™ Reference
© COPYRIGHT 1998–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2011 Online only New for Version 2.0 (Release R2011b)
March 2012 Online only Revised for Version 2.1 (Release R2012a)
September 2012 Online only Revised for Version 2.2 (Release R2012b)
March 2013 Online only Revised for Version 2.3 (Release R2013a)
September 2013 Online only Revised for Version 2.4 (Release R2013b)
March 2014 Online only Revised for Version 2.5 (Release 2014a)
October 2014 Online only Revised for Version 2.6 (Release 2014b)
March 2015 Online only Revised for Version 2.7 (Release 2015a)
September 2015 Online only Revised for Version 2.8 (Release 2015b)
March 2016 Online only Revised for Version 3.0 (Release 2016a)
September 2016 Online only Revised for Version 3.1 (Release 2016b)
March 2017 Online only Revised for Version 3.2 (Release 2017a)
September 2017 Online only Revised for Version 3.3 (Release 2017b)
March 2018 Online only Revised for Version 3.4 (Release 2018a)
September 2018 Online only Revised for Version 3.5 (Release 2018b)
March 2019 Online only Revised for Version 3.6 (Release 2019a)
September 2019 Online only Revised for Version 3.7 (Release 2019b)
March 2020 Online only Revised for Version 3.8 (Release 2020a)
September 2020 Online only Revised for Version 3.9 (Release 2020b)
March 2021 Online only Revised for Version 3.9.1 (Release 2021a)
September 2021 Online only Revised for Version 3.10 (Release 2021b)
March 2022 Online only Revised for Version 3.11 (Release 2022a)
September 2022 Online only Revised for Version 3.12 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Blocks
1

Classes
2

Methods and Apps
3

iii

Contents

Blocks

1

Adaptive Lookup Table (1D Stair-Fit)
One-dimensional adaptive table lookup

Library
Simulink Design Optimization

Description
The Adaptive Lookup Table (1D Stair-Fit) block creates a one-dimensional adaptive lookup table by
dynamically updating the underlying lookup table. The block uses the outputs, y, of your system to do
the adaptations.

Each indexing parameter u may take a value within a set of adapting data points, which are called
breakpoints. Two breakpoints in each dimension define a cell. The set of all breakpoints in one of the
dimensions defines a grid. In the one-dimensional case, each cell has two breakpoints, and the cell is
a line segment.

You can use the Adaptive Lookup Table (1D Stair Fit) block to model time-varying systems with one
input.

Data Type Support
Doubles only

Parameters
First input (row) breakpoint set

The vector of values containing possible block input values. The input vector must be
monotonically increasing.

Make initial table an input
Selecting this check box forces the Adaptive Lookup Table (1D Stair-Fit) block to ignore the Table
data (initial) parameter, and creates a new input port Tin. Use this port to input the table data.

Table data (initial)
The initial table output values. This vector must be of size N-1, where N is the number of
breakpoints.

1 Blocks

1-2

Table numbering data
Number values assigned to cells. This vector must be the same size as the table data vector, and
each value must be unique.

Adaptation method
Select one of the following options:

• Sample mean — Average all the values received within a cell.
• Sample mean (with forgetting) — Give more weight to the new data. The weighting is

determined by the Adaptation gain parameter.

For more information, see “Selecting an Adaptation Method”.
Adaptation gain (0 to 1)

A number between 0 and 1 that regulates the weight given to new data during the adaptation. A 0
means short memory (last data becomes the table value), and 1 means long memory (average all
data received in a cell).

Make adapted table an output
Selecting this check box creates an additional output port Tout for the adapted table.

Add adaptation enable/disable/reset port
Selecting this check box creates an additional input port Enable that enables, disables, or resets
the adaptive lookup table. A signal value of 0 applied to the port disables the adaptation, and
signal value of 1 enables the adaptation. Setting the signal value to 2 resets the table values to
the initial table data.

Add cell lock enable/disable port
Selecting this check box creates an additional input port Lock that provides the means for
updating only specified cells during a simulation run. A signal value of 0 unlocks the specified
cells and signal value of 1 locks the specified cells.

Action for out-of-range input
Ignore or Adapt by extrapolating beyond the extreme breakpoints.

Version History
Introduced in R2009a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Adaptive Lookup Table (2D Stair-Fit) | Adaptive Lookup Table (nD Stair-Fit)

Topics
“What are Adaptive Lookup Tables?”
“Selecting an Adaptation Method”

 Adaptive Lookup Table (1D Stair-Fit)

1-3

Adaptive Lookup Table (2D Stair-Fit)
Two-dimensional adaptive table lookup

Library
Simulink Design Optimization

Description
The Adaptive Lookup Table (2D Stair-Fit) block creates a two-dimensional adaptive lookup table by
dynamically updating the underlying lookup table. The block uses the outputs, y, of your system to do
the adaptations.

Each indexing parameter u may take a value within a set of adapting data points, which are called
breakpoints. Two breakpoints in each dimension define a cell. The set of all breakpoints in one of the
dimensions defines a grid. In the two-dimensional case, each cell has four breakpoints and is a flat
surface.

You can use the Adaptive Lookup Table (2D Stair-Fit) block to model time-varying systems with two
inputs.

Data Type Support
Doubles only

Parameters
First input (row) breakpoint set

The vector of values containing possible block input values for the first input variable. The first
input vector must be monotonically increasing.

Second input (column) breakpoint set
The vector of values containing possible block input values for the second input variable. The
second input vector must be monotonically increasing.

Make initial table an input
Selecting this check box forces the Adaptive Lookup Table (2D Stair-Fit) block to ignore the Table
data (initial) parameter, and creates a new input port Tin. Use this port to input the table data.

1 Blocks

1-4

Table data (initial)
The initial table output values. This 2-by-2 matrix must be of size (n-1)-by-(m-1), where n is the
number of first input breakpoints and m is the number of second input breakpoints.

Table numbering data
Number values assigned to cells. This matrix must be the same size as the table data matrix, and
each value must be unique.

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample mean averages all the
values received within a cell. Sample mean with forgetting gives more weight to the new data.
How much weight is determined by the Adaptation gain parameter. For more information, see
“Selecting an Adaptation Method”.

Adaptation gain (0 to 1)
A number from 0 to 1 that regulates the weight given to new data during the adaptation. A 0
means short memory (last data becomes the table value), and 1 means long memory (average all
data received in a cell).

Make adapted table an output
Selecting this check box creates an additional output port Tout for the adapted table.

Add adaptation enable/disable/reset port
Selecting this check box creates an additional input port Enable that enables, disables, or resets
the adaptive lookup table. A signal value of 0 applied to the port disables the adaptation, and
signal value of 1 enables the adaptation. Setting the signal value to 2 resets the table values to
the initial table data.

Add cell lock enable/disable port
Selecting this check box creates an additional input port Lock that provides the means for
updating only specified cells during a simulation run. A signal value of 0 unlocks the specified
cells and signal value of 1 locks the specified cells.

Action for out-of-range input
Ignore or Adapt by extrapolating beyond the extreme breakpoints.

Version History
Introduced in R2009a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Adaptive Lookup Table (1D Stair-Fit) | Adaptive Lookup Table (nD Stair-Fit)

Topics
“What are Adaptive Lookup Tables?”
“Selecting an Adaptation Method”

 Adaptive Lookup Table (2D Stair-Fit)

1-5

Adaptive Lookup Table (nD Stair-Fit)
Adaptive lookup table of arbitrary dimension

Library
Simulink Design Optimization

Description
The Adaptive Lookup Table (nD Stair-Fit) block creates an adaptive lookup table of arbitrary
dimension by dynamically updating the underlying lookup table. The block uses the outputs of your
system to do the adaptations.

Each indexing parameter may take a value within a set of adapting data points, which are called
breakpoints. Breakpoints in each dimension define a cell. The set of all breakpoints in one of the
dimensions defines a grid. In the n-dimensional case, each cell has two n breakpoints and is an (n-1)
hypersurface.

You can use the Adaptive Lookup Table (nD Stair-Fit) block to model time-varying systems with 2 or
more inputs.

Data Type Support
Doubles only

Parameters
Number of table dimensions

The number of dimensions for the adaptive lookup table.
Table breakpoints (cell array)

A set of one-dimensional vectors that contains possible block input values for the input variables.
Each input row must be monotonically increasing, but the rows do not have to be the same
length. For example, if the Number of table dimensions is 3, you can set the table breakpoints
as follows:

{[1 2 3], [5 7], [1 3 5 7]}

Make initial table an input
Selecting this check box forces the Adaptive Lookup Table (nD Stair-Fit) block to ignore the Table
data (initial) parameter, and creates a new input port Tin. Use this port to input the table data.

1 Blocks

1-6

Table data (initial)
The initial table output values. This (n-D) array must be of size (n-1)-by-(n-1) ... -by- (n-1), (D
times), where D is the number of dimensions and n is the number of input breakpoints.

Table numbering data
Number values assigned to cells. This vector must be the same size as the table data array, and
each value must be unique.

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample mean averages all the
values received within a cell. Sample mean with forgetting gives more weight to the new data.
How much weight is determined by the Adaptation gain parameter. For more information, see
“Selecting an Adaptation Method”.

Adaptation gain (0 to 1)
A number from 0 to 1 that regulates the weight given to new data during the adaptation. A 0
means short memory (last data becomes the table value), and 1 means long memory (average all
data received in a cell).

Make adapted table an output
Selecting this check box creates an additional output port Tout for the adapted table.

Note The Adaptive Lookup Table (n-D Stair Fit) block cannot output a table of 3 or more
dimensions.

Add adaptation enable/disable/reset port
Selecting this check box creates an additional input port Enable that enables, disables, or resets
the adaptive lookup table. A signal value of 0 applied to the port disables the adaptation, and
signal value of 1 enables the adaptation. Setting the signal value to 2 resets the table values to
the initial table data.

Add cell lock enable/disable port
Selecting this check box creates an additional input port Lock that provides the means for
updating only specified cells during a simulation run. A signal value of 0 unlocks the specified
cells and signal value of 1 locks the specified cells.

Action for out-of-range input
Ignore or Adapt by extrapolating beyond the extreme breakpoints.

Version History
Introduced in R2009a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Adaptive Lookup Table (1D Stair-Fit) | Adaptive Lookup Table (2D Stair-Fit)

 Adaptive Lookup Table (nD Stair-Fit)

1-7

Topics
“Model Engine Using n-D Adaptive Lookup Table”
“What are Adaptive Lookup Tables?”
“Selecting an Adaptation Method”

1 Blocks

1-8

Check Against Reference
Check that model signal tracks reference signal during simulation
Library: Simulink Design Optimization / Model Verification

Simulink Design Optimization / Signal Constraints

Description
Check that a signal remains within the tolerance bounds of a reference signal during simulation.

• If the signal satisfies all bounds, the block does nothing.
• If the signal does not satisfy a bound, a warning message appears in the MATLAB® command

window. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and return an error message.

During simulation, the block can also return a logical assertion signal.

• If the signal satisfies all bounds, the assertion signal is true (1).
• If the signal does not satisfy a bound, the assertion signal is false (0).

You can add Check Against Reference blocks to multiple signals to check that they track reference
signals. You can also plot the reference signal on a time plot to graphically verify the signal tracking.

This block and the other blocks in the Model Verification library test that a signal remains within
specified time-domain characteristic bounds. When a model does not violate any bound, you can
disable the block by clearing the assertion option. If you modify the model, you can re-enable
assertion to ensure that your changes do not cause the model to violate a bound.

If the signal does not satisfy the bounds, you can optimize the model parameters to satisfy the
bounds. If you have Simulink Control Design™ software, you can add frequency-domain bounds, such
as the Bode magnitude, and optimize the model response to satisfy both time-domain and frequency-
domain requirements.

The block can be used in all simulation modes for signal monitoring, but only in Normal or
Accelerator simulation mode for response optimization.

Ports
Input

Port_1 (u) — Signal to check against specified reference signal
scalar | vector | matrix

 Check Against Reference

1-9

Signal to check against the reference signal specified in Amplitudes and Times during simulation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | enumerated | bus

Output

Port_1 (out) — Output assertion signal
1 | 0

Output signal indicating if the input signal is within bounds of the specified assertion signal. At each
time step, the output is returned as one of the following:

• True (1) if the assertion succeeds, that is, the input signal satisfies all bounds
• False (0) if the assertion fails, that is, the signal violates a bound

The data type of the output signal is double by default. To set the output data type as Boolean for all
blocks that generate logic signals in your Simulink model, select Implement logic signals as Boolean
data in Configuration Parameters.
Dependencies

To enable this port, on the Assertion tab, select the Output assertion signal parameter.
Data Types: Boolean | double

Parameters
Show Plot — Open plot window

button

Use the plot to view the following.

• System characteristics and signals computed during simulation — Click this button before you
simulate the model to view the system characteristics or signal.

You can display additional characteristics, such as the peak response time, by right-clicking the
plot and selecting Characteristics.

• Bounds — You can specify bounds on the Bounds tab or by right-clicking the plot and selecting
Bounds > New Bound.

You can modify bounds by dragging the bound segment or by right-clicking the plot and selecting
Bounds > Edit Bound. Before you simulate the model, click Update Block to update the bound
value in the block parameters.

Typical tasks that you perform in the plot window include:

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting View >
Highlight Simulink Block. This action makes the model window active and highlights the block.

•
Simulating the model by clicking . This action also linearizes the portion of the model between
the specified linearization input and output.

1 Blocks

1-10

•
Adding a legend on the linear system characteristic plot by clicking .

Show plot on block open — Double-click block to open plot

off (default) | on

Open the plot window instead of the block parameters when you double-click the block in the
Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying bounds, in
the plot window instead of the block parameters. If you want to access the block parameters from the

plot window, select Edit or click .

For more information on the plot, see the Show plot parameter.

Programmatic Use
Parameter: LaunchViewOnOpen
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Response Optimization — Open Response Optimizer

button

Open the Response Optimizer to optimize the model response to meet design requirements
specified on the Bounds tab.

See Also

• “Design Optimization to Meet Step Response Requirements (GUI)”
• “Design Optimization to Meet Time-Domain and Frequency-Domain Requirements (GUI)”

Bounds Tab

Include reference signal tracking in assertion — Check that signal tracks reference
signal

on (default) | off

Check that the input signal to the block tracks the reference signal specified in Amplitudes and
Times during simulation. The software displays a warning if the signal does not track the reference
signal.

• When you disable this parameter, the software stops checking that the input signal tracks the
reference during simulation.

• To view only the reference signal on the plot, disable Enable assertion.

The reference signal appears on a time plot if you select Show plot, as shown in the figure.

 Check Against Reference

1-11

Dependencies

To use this parameter, select Enable assertion in block parameters. When Enable assertion is
disabled, the software does not use the reference signal for assertion, but it continues to appear on
the plot.
Programmatic Use
Parameter: EnableReferenceBound
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Times — Time vector

linspace(0,10) (default) | vector of positive values | MATLAB expression

Time vector for the reference signal in seconds, specified as a monotonically increasing vector of
positive values. You can also specify a MATLAB expression that evaluates to a vector. Specify the
corresponding amplitudes using the Amplitudes parameter. The Times vector must have the same
dimension as the Amplitudes vector.
Programmatic Use
Parameter: ReferenceTimes
Type: vector
Value: vector of positive values | MATLAB expression
Default: linspace(0,10)

Amplitudes — Reference signal amplitude

1-exp(-linspace(0,10)/2) (default) | vector | MATLAB expression

Amplitude of the reference signal, specified as a real and finite vector, corresponding to the time
vector specified in Times. You can also specify a MATLAB expression that evaluates to a vector. The
Amplitudes vector must have the same dimension as the Times (seconds) vector.

1 Blocks

1-12

Programmatic Use
Parameter: ReferenceAmplitudes
Type: vector
Value: vector | MATLAB expression
Default: 1-exp(-linspace(0,10)/2)

Absolute tolerance — Absolute tolerance for signal

eps^(1/3) (default) | positive real scalar

Absolute tolerance used to determine bounds as the input signal approaches the reference signal,
specified as a positive real scalar. During simulation, the signal must remain within upper and lower
limits respective to the reference signal given by

yu = (1 + RelTol)yr + AbsTol

yl = (1 – RelTol)yr – AbsTol

Here:

• yr is the value of the reference at a certain time.
• yu is the upper tolerance bound corresponding to that time point.
• yl is the lower tolerance bound corresponding to that time point.
• RelTol sets the relative tolerance between input and reference signal amplitudes at each time

step. To set RelTol, use the Relative tolerance parameter.
• AbsTol sets the absolute tolerance between input and reference signal amplitudes at each time

step. To set AbsTol, use the Absolute tolerance parameter.

The block asserts if the signal violates these limits.

Programmatic Use
Parameter: AbsTolerance
Type: scalar
Value: positive real scalar
Default: eps^(1/3)

Relative tolerance — Relative tolerance for signal

0.01 (default) | positive real scalar

Relative tolerance used to determine bounds as the input signal approaches the reference signal,
specified as a positive real scalar. During simulation, the signal must remain within upper and lower
limits respective to the reference signal given by

yu = (1 + RelTol)yr + AbsTol

yl = (1 – RelTol)yr – AbsTol

Here:

• yr is the value of the reference at a certain time.
• yu is the upper tolerance bound.
• yl is the lower tolerance bound.

 Check Against Reference

1-13

• RelTol sets the relative tolerance between input and reference signal amplitudes at each time
step. To set RelTol, use the Relative tolerance parameter.

• AbsTol sets the absolute tolerance between input and reference signal amplitudes at each time
step. To set AbsTol, use the Absolute tolerance parameter.

The block asserts if the signal violates these limits.

Programmatic Use
Parameter: RelTolerance
Type: scalar
Value: positive real scalar
Default: 0.01

Assertion Tab

Enable assertion — Enable or disable check

on (default) | off

Enable the block to check that bounds specified and included for assertion on the Bounds tab are
satisfied during simulation. Assertion fails if a bound is not satisfied. A warning, reporting the
assertion failure, appears at the MATLAB prompt.

If the assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion fails
(optional).

• Stop the simulation and return an error message, by selecting Stop simulation when assertion
fails.

This parameter has no effect if you do not specify any bounds.

When you disable this parameter, the block no longer checks that the input signal satisfies the
specified bounds. The block icon also updates to indicate that assertion is disabled.

In the Simulink model, in the Configuration Parameters, the Model Verification block enabling
parameter lets you enable or disable all model verification blocks in a model, regardless of the setting
of this option in the block.

Programmatic Use
Parameter: enabled
Type: character vector
Value: 'on' | 'off'
Default: 'on'

1 Blocks

1-14

Simulation callback when assertion fails (optional) — Expression to evaluate
when assertion fails

'' (default) | MATLAB expression

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, first define all variables used in the
expression in the workspace.

Dependencies

To enable this parameter, select Enable assertion.

Programmatic Use
Parameter: callback
Type: character vector
Value: MATLAB expression
Default: ''

Stop simulation when assertion fails — Halt simulation when assertion fails

off (default) | on

Stop the simulation when the input signal violates a bound specified on the Bounds tab during
simulation, that is, when assertion fails.

If you run the simulation from a Simulink model window, the Simulation Diagnostics window opens to
display an error message. The block where the bound violation occurs is highlighted in the model.

Because selecting this option stops the simulation as soon as the assertion fails, the software does not
report assertion failures that might occur later during the simulation. If you want to report all
assertion failures, do not select this option.

Dependencies

To enable this parameter, select Enable assertion.

Programmatic Use
Parameter: stopWhenAssertionFail
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Output assertion signal — Create output signal

off (default) | on

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, that is, the input signal satisfies all bounds
• False (0) if assertion fails, that is, the input signal violates a bound

The data type of the output signal is double by default. To set the output data type as Boolean for all
blocks that generate logic signals in your Simulink model, select Implement logic signals as Boolean
data in Configuration Parameters.

 Check Against Reference

1-15

Selecting this parameter adds an output port to the block that you can connect to any block in the
model.

Use this parameter to design complex assertion logic. For an example, see “Verify Model Using
Simulink Control Design and Simulink Verification Blocks” (Simulink Control Design).

Programmatic Use
Parameter: export
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2011b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Code generation is available only when the Output assertion signal parameter is enabled.

See Also
Check Custom Bounds | Check Step Response Characteristics

Topics
“Design Optimization to Track Reference Signal (GUI)”

1 Blocks

1-16

Check Custom Bounds
Check that model signal satisfies bounds during simulation
Library: Simulink Design Optimization / Model Verification

Simulink Design Optimization / Signal Constraints

Description
Check that a signal satisfies the specified upper and lower bounds during simulation.

• If the signal satisfies all bounds, the block does nothing.
• If the signal does not satisfy a bound, a warning message appears in the MATLAB command

window. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and return an error message.

During simulation, the block can also return a logical assertion signal.

• If the signal satisfies all bounds, the assertion signal is true (1).
• If the signal does not satisfy a bound, the assertion signal is false (0).

Using the block, you can create:

• A single bound with one edge
• A single bound with multiple edges
• Multiple bounds

You can add Check Custom Bounds blocks to multiple signals to check that they satisfy the bounds.
You can also plot the bounds on a time plot to graphically verify that the signal satisfies the bounds.

This block and the other blocks in the Model Verification library test that a signal remains within
specified time-domain characteristic bounds. When a model does not violate any bound, you can
disable the block by clearing the assertion option. If you modify the model, you can re-enable
assertion to ensure that your changes do not cause the model to violate a bound.

If the signal does not satisfy the bounds, you can optimize the model parameters to satisfy the
bounds. If you have Simulink Control Design software, you can add frequency-domain bounds, such
as the Bode magnitude, and optimize the model response to satisfy both time-domain and frequency-
domain requirements.

The block can be used in all simulation modes for signal monitoring, but only in Normal or
Accelerator simulation mode for response optimization.

 Check Custom Bounds

1-17

Ports
Input

Port_1 (u) — Signal to check against specified bounds
scalar | vector | matrix

Signal to check against the upper and lower bounds specified in Amplitudes and Times during
simulation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | enumerated | bus

Output

Port_1 (out) — Output assertion signal
1 | 0

Output signal indicating if the input signal is within bounds of the specified assertion signal. At each
time step, the output is returned as one of the following:

• True (1) if the assertion succeeds, that is, the signal satisfies all bounds
• False (0) if the assertion fails, that is, the signal violates a bound

The data type of the output signal is double by default. To set the output data type as Boolean for all
blocks that generate logic signals in your Simulink model, select Implement logic signals as
Boolean data in Configuration Parameters.

Dependencies

To enable this port, on the Assertion tab, select the Output assertion signal parameter.
Data Types: Boolean | double

Parameters
Show Plot — Open plot window

button

Use the plot to view the following.

• System characteristics and signals computed during simulation — Click this button before you
simulate the model to view the system characteristics or signal.

You can display additional characteristics, such as the peak response time, by right-clicking the
plot and selecting Characteristics.

• Bounds — You can specify bounds on the Bounds tab or by right-clicking the plot and selecting
Bounds > New Bound.

You can modify bounds by dragging the bound segment or by right-clicking the plot and selecting
Bounds > Edit Bound. Before you simulate the model, click Update Block to update the bound
value in the block parameters.

Typical tasks that you perform in the plot window include:

1 Blocks

1-18

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting View >
Highlight Simulink Block. This action makes the model window active and highlights the block.

•
Simulating the model by clicking . This action also linearizes the portion of the model between
the specified linearization input and output.

•
Adding a legend on the linear system characteristic plot by clicking .

Show plot on block open — Double-click block to open plot

off (default) | on

Open the plot window instead of the block parameters when you double-click the block in the
Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying bounds, in
the plot window instead of the block parameters. If you want to access the block parameters from the

plot window, select Edit or click .

For more information on the plot, see the Show plot parameter.

Programmatic Use
Parameter: LaunchViewOnOpen
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Response Optimization — Open Response Optimizer

button

Open the Response Optimizer to optimize the model response to meet design requirements
specified on the Bounds tab.

See Also

• “Design Optimization to Meet Step Response Requirements (GUI)”
• “Design Optimization to Meet Time-Domain and Frequency-Domain Requirements (GUI)”

Bounds Tab

Include upper bound in assertion — Check that signal satisfies upper bound

on (default) | off

Check that a signal is less than or equal to the upper bounds, specified in the upper bound Times and
Amplitudes, during simulation. The software displays a warning if the signal violates the upper
bounds.

The bounds also appear on the time plot.

 Check Custom Bounds

1-19

When you disable this parameter, the software stops checking that the input signal satisfies the upper
bounds during simulation. The bound segments are also grayed out on the plot.

To view only the bounds and input signal on the plot, clear Enable assertion.

Dependencies

To use this parameter, on the Assertion tab, select Enable assertion. If you clear Enable
assertion, the software does not use the bounds for assertion, but they continue to appear on the
plot.

Programmatic Use
Parameter: EnableUpperBound
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Times — Upper bound time vector

[0 5; 5 10] (default) | two-element vector | two-column matrix | cell array

Time vector for one or more upper bound segments, specified in seconds.

Specify the corresponding amplitude values in Amplitudes.

• To specify a single bound with one edge, use a two-element vector. The vector must be of the form
[Tstart Tend], where Tstart and Tend are positive finite numbers with Tstart < Tend.

For example, to create a single upper bound with an amplitude of 1.2 in a time interval of 0 to 10
seconds, specify [0 10] for Times and [1.2 1.2] for Amplitudes.

• To specify a single bound with multiple edges, use a two-column matrix. The matrix must be of the
form [T1 T2 ; T2 T3 ;…; Tn Tn+1], where n is the number of edges in the bound. A single bound with

1 Blocks

1-20

multiple edges is piecewise continuous, so specify time intervals such that the next edge begins at
the same time where the previous edge ends.

For example, to create a single bound with two edges at times of 0–5 and 5–10 seconds with
amplitudes of 1.2 and 1, respectively, specify [0 5;5 10] for Times and [1.2 1.2;1 1] for
Amplitudes.

• To specify multiple bounds, use a cell array of two-element vectors, two-column matrices, or both.
That is, use a cell array of several single bounds.

For example, to create two bounds at times of 0–4 and 6–10 seconds with amplitudes of 1.2 and 1,
respectively, specify {[0 4] [6 10]} for Times and {[1.2 1.2] [1 1]} for Amplitudes.

You can add or modify start and end times from the plot window.

• To add new time vectors, right-click the yellow area on the plot and select Edit. Click Insert to
add a new row to the Edit Bound dialog. Specify the start and end times of the new bound
segment in the Time column. Specify the corresponding amplitudes in the Amplitude column.

• To modify the start and end times, drag the bound segment. Alternatively, right-click the segment,
and select Edit. Specify the new times in the Time column.

Click Update Block before simulating the model.

To check that the input signal satisfies the amplitudes that correspond to the upper bound time
vectors, select both Include upper bound in assertion and Enable assertion.

Programmatic Use
Parameter: UpperBoundTimes
Type: character vector
Value: two-element vector | two-column matrix | cell array
Default: [0 5; 5 10]

Amplitudes — Upper bound amplitude values

[1.1 1.1; 1.01 1.01] (default) | two-element vector | two-column matrix | cell array

 Check Custom Bounds

1-21

Amplitude values for one or more upper bound segments.

Specify the corresponding start and end times in Times.

• To specify a single bound with one edge, use a two-element vector. The vector must be of the form
[A1 A2], where A1 and A2 are the bound amplitudes at the corresponding edges of the time vector.
For a constant amplitude throughout the time interval, use A1 = A2.

For example, to create a single upper bound with an amplitude of 1.2 in a time interval 0 to 10
seconds, specify [0 10] for Times and [1.2 1.2] for Amplitudes.

• To specify a single bound with multiple edges, use a two-column matrix. The matrix must be of the
form [A1 B1 ;…; An Bn], where n is the number of edges in the bound. For a constant amplitude
throughout a time interval, use Ak = Bk, where k = 1,…,n

For example, to create a single bound with two edges at times of 0–5 and 5–10 seconds with
amplitudes of 1.2 and 1, respectively, specify [0 5;5 10] for Times and [1.2 1.2;1 1] for
Amplitudes.

• To specify multiple bounds, use a cell array of two-element vectors, two-column matrices, or both.
That is, use a cell array of several single bounds.

For example, to create two bounds at times of 0–4 and 6–10 seconds with amplitudes of 1.2 and 1,
respectively, specify {[0 4] [6 10]} for Times and {[1.2 1.2] [1 1]} for Amplitudes.

You can add or modify amplitudes from the plot window.

1 Blocks

1-22

• To add new amplitudes, right-click the plot and select Edit. Click Insert to add a new row to the
Edit Bound dialog. Specify the start and end amplitudes of the new bound segment in the
Amplitude column. Specify the corresponding start and end times in the Time column.

• To modify the start and end amplitudes, drag the bound segment. Alternatively, right-click the
segment, and select Edit. Specify the new amplitudes in the Amplitude column.

Click Update Block before simulating the model.

To check that the input signal satisfies the upper amplitude bounds, select both Include upper
bound in assertion and Enable assertion.

Programmatic Use
Parameter: UpperBoundAmplitudes
Type: character vector
Value: two-element vector | two-column matrix | cell array
Default: [1.1 1.1; 1.01 1.01]

Include lower bound in assertion — Check that signal satisfies lower bound

off (default) | on

Check that a signal is greater than or equal to the lower bounds, specified in the lower bound Times
and Amplitudes, during simulation. The software displays a warning if the signal violates the lower
bounds.

The bounds also appear on the time plot.

When this parameter is disabled, the lower bounds are disabled and the software stops checking that
the bounds are satisfied during simulation. The bound segments are also greyed out on the plot.

To view only the bounds and input signal on the plot, clear Enable assertion.

Dependencies

To use this parameter, on the Assertion tab, select Enable assertion. If you clear Enable
assertion, the software does not use the bounds for assertion, but they continue to appear on the
plot.

Programmatic Use
Parameter: EnableLowerBound
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Times — Lower bound time vector

 Check Custom Bounds

1-23

[] (default) | two-element vector | two-column matrix | cell array

Time vector for one or more lower bound segments, specified in seconds.

Specify the corresponding amplitude values in Amplitudes.

• To specify a single bound with one edge, use a two-element vector. The vector must be of the form
[Tstart Tend], where Tstart and Tend are positive finite numbers with Tstart < Tend.

For example, to create a single lower bound with an amplitude of 0.8 in a time interval of 0 to 10
seconds, specify [0 10] for Times and [0.8 0.8] for Amplitudes.

• To specify a single bound with multiple edges, use a two-column matrix. The matrix must be of the
form [T1 T2 ; T2 T3 ;…; Tn Tn+1], where n is the number of edges in the bound. A single bound with
multiple edges is piecewise continuous, specify time intervals such that the next edge begins at
the same time where the previous edge ends.

For example, to create a single bound with two edges at times of 0–5 and 5–10 seconds with
amplitudes of 0.8 and 0.98, respectively, specify [0 5;5 10] for Times and [0.8 0.8;0.98
0.98] for Amplitudes.

• To specify multiple bounds, use a cell array of two-element vectors, two-column matrices, or both.
That is, use a cell array of several single bounds.

For example, to create two bounds at times of 0–4 and 6–10 seconds with amplitudes of 0.8 and
0.98, respectively, specify {[0 4] [6 10]} for Times and {[0.8 0.8] [0.98 0.98]} for
Amplitudes.

1 Blocks

1-24

You can add or modify start and end times from the plot window.

• To add new time vectors, right-click the yellow area on the plot and select Edit. Click Insert to
add a new row to the Edit Bound dialog. Specify the start and end times of the new bound
segment in the Time column. Specify the corresponding amplitudes in the Amplitude column.

• To modify the start and end times, drag the bound segment. Alternatively, right-click the segment,
and select Edit. Specify the new times in the Time column.

Click Update Block before simulating the model.

To check that the input signal satisfies the amplitudes that correspond to the lower bound time
vectors, select both Include lower bound in assertion and Enable assertion.

Programmatic Use
Parameter: LowerBoundTimes
Type: character vector
Value: two-element vector | two-column matrix | cell array
Default: []

Amplitudes — Lower bound amplitude values

[] (default) | two-element vector | two-column matrix | cell array

Amplitude values for one or more lower bound segments.

Specify the corresponding start and end times in Times.

• To specify a single bound with one edge, use a two-element vector. The vector must be of the form
[A1 A2], where A1 and A2 are the bound amplitudes at the corresponding edges of the time vector.
For a constant amplitude throughout the time interval, use A1 = A2.

For example, to create a single lower bound with an amplitude of 0.8 in a time interval of 0 to 10
seconds, specify [0 10] for Times and [0.8 0.8] for Amplitudes.

• To specify a single bound with multiple edges, use a two-column matrix. The matrix must be of the
form [A1 B1 ;…; An Bn], where n is the number of edges in the bound. For a constant amplitude
throughout a time interval, use Ak = Bk, where k = 1,…,n

For example, to create a single bound with two edges at times of 0–5 and 5–10 seconds with
amplitudes of 0.8 and 0.98, respectively, specify [0 5;5 10] for Times and [0.8 0.8;0.98
0.98] for Amplitudes.

 Check Custom Bounds

1-25

• To specify multiple bounds, use a cell array of two-element vectors, two-column matrices, or both.
That is, use a cell array of several single bounds.

For example, to create two bounds at times of 0–4 and 6–10 seconds with amplitudes of 0.8 and
0.98, respectively, specify {[0 4] [6 10]} for Times and {[0.8 0.8] [0.98 0.98]} for
Amplitudes.

You can add or modify amplitudes from the plot window.

• To add new amplitudes, right-click the plot and select Edit. Click Insert to add a new row to the
Edit Bound dialog. Specify the start and end amplitudes of the new bound segment in the
Amplitude column. Specify the corresponding start and end times in the Time column.

• To modify the start and end amplitudes, drag the bound segment. Alternatively, right-click the
segment, and select Edit. Specify the new amplitudes in the Amplitude column.

Click Update Block before simulating the model.

To check that the input signal satisfies the lower amplitude bounds, select both Include lower
bound in assertion and Enable assertion.

Programmatic Use
Parameter: LowerBoundAmplitudes
Type: character vector
Value: two-element vector | two-column matrix | cell array
Default: []

Enable zero-crossing detection — Evaluate model at bound edges

on (default) | off

Ensure that the software simulates the model to produce output at the bound edges. Simulating the
model at the bound edges prevents the simulation solver from missing an assertion that the signal
satisfies that bound at its edge.

1 Blocks

1-26

For more information, see “Zero-Crossing Detection”.

Programmatic Use
Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Assertion Tab

Enable assertion — Enable or disable check

on (default) | off

Enable the block to check that bounds specified and included for assertion on the Bounds tab are
satisfied during simulation. Assertion fails if a bound is not satisfied. A warning, reporting the
assertion failure, appears at the MATLAB prompt.

If the assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion fails
(optional).

• Stop the simulation and return an error message, by selecting Stop simulation when assertion
fails.

This parameter has no effect if you do not specify any bounds.

When you disable this parameter, the block no longer checks that the input signal satisfies the
specified bounds. The block icon also updates to indicate that assertion is disabled.

In the Simulink model, in the Configuration Parameters, the Model Verification block enabling
parameter lets you enable or disable all model verification blocks in a model, regardless of the setting
of this option in the block.

Programmatic Use
Parameter: enabled
Type: character vector

 Check Custom Bounds

1-27

Value: 'on' | 'off'
Default: 'on'

Simulation callback when assertion fails (optional) — Expression to evaluate
when assertion fails

'' (default) | MATLAB expression

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, first define all variables used in the
expression in the workspace.

Dependencies

To enable this parameter, select Enable assertion.

Programmatic Use
Parameter: callback
Type: character vector
Value: MATLAB expression
Default: ''

Stop simulation when assertion fails — Halt simulation when assertion fails

off (default) | on

Stop the simulation when the signal violates a bound specified on the Bounds tab during simulation,
that is, when assertion fails.

If you run the simulation from a Simulink model window, the Simulation Diagnostics window opens to
display an error message. The block where the bound violation occurs is highlighted in the model.

Because selecting this option stops the simulation as soon as the assertion fails, the software does not
report assertion failures that might occur later during the simulation. If you want to report all
assertion failures, do not select this option.

Dependencies

To enable this parameter, select Enable assertion.

Programmatic Use
Parameter: stopWhenAssertionFail
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Output assertion signal — Create output signal

off (default) | on

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, that is, the input signal satisfies all bounds
• False (0) if assertion fails, that is, the input signal violates a bound

1 Blocks

1-28

The data type of the output signal is double by default. To set the output data type as Boolean for all
blocks that generate logic signals in your Simulink model, select Implement logic signals as Boolean
data in Configuration Parameters.

Selecting this parameter adds an output port to the block that you can connect to any block in the
model.

Use this parameter to design complex assertion logic. For an example, see “Verify Model Using
Simulink Control Design and Simulink Verification Blocks” (Simulink Control Design).

Programmatic Use
Parameter: export
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Version History
Introduced in R2011b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Code generation is available only when the Output assertion signal parameter is enabled.

See Also
Check Against Reference | Check Step Response Characteristics

 Check Custom Bounds

1-29

Check Step Response Characteristics
Check that model signal satisfies step response bounds during simulation
Library: Simulink Design Optimization / Model Verification

Simulink Design Optimization / Signal Constraints

Description
Check that a signal satisfies the step response bounds during simulation.

• If the signal satisfies all bounds, the block does nothing.
• If the signal does not satisfy a bound, a warning message appears in the MATLAB command

window. You can also specify that the block:

• Evaluate a MATLAB expression.
• Stop the simulation and return an error message.

During simulation, the block can also return a logical assertion signal.

• If the signal satisfies all bounds, the assertion signal is true (1).
• If the signal does not satisfy a bound, the assertion signal is false (0).

You can add Check Step Response Characteristics blocks to multiple signals to check that they satisfy
the bounds. You can also plot the bounds on a time plot to graphically verify that the signal satisfies
the bounds.

This block and the other blocks in the Model Verification library test that a signal remains within
specified time-domain characteristic bounds. When a model does not violate any bound, you can
disable the block by clearing the assertion option. If you modify the model, you can re-enable
assertion to ensure that your changes do not cause the model to violate a bound.

If the signal does not satisfy the bounds, you can optimize the model parameters to satisfy the
bounds. If you have Simulink Control Design software, you can add frequency-domain bounds, such
as the Bode magnitude, and optimize the model response to satisfy both time-domain and frequency-
domain requirements.

The block can be used in all simulation modes for signal monitoring, but only in Normal or
Accelerator simulation mode for response optimization.

1 Blocks

1-30

Ports
Input

Port_1 (u) — Signal to check against specified bounds
scalar | vector | matrix

Signal to check against the specified step response characteristics during simulation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | enumerated | bus

Output

Port_1 (out) — Output assertion signal
1 | 0

Output signal indicating if the input signal is within bounds of the specified assertion signal. At each
time step, the output is returned as one of the following:

• True (1) if the assertion succeeds, that is, the signal satisfies all bounds
• False (0) if the assertion fails, that is, the signal violates a bound

The data type of the output signal is double by default. To set the output data type as Boolean for all
blocks that generate logic signals in your Simulink model, select Implement logic signals as
Boolean data in Configuration Parameters.

Dependencies

To enable this port, on the Assertion tab, select the Output assertion signal parameter.
Data Types: Boolean | double

Parameters
Show Plot — Open plot window

button

Use the plot to view the following.

• System characteristics and signals computed during simulation — Click this button before you
simulate the model to view the system characteristics or signal.

You can display additional characteristics, such as the peak response time, by right-clicking the
plot and selecting Characteristics.

• Bounds — You can specify bounds on the Bounds tab or by right-clicking the plot and selecting
Bounds > New Bound.

You can modify bounds by dragging the bound segment or by right-clicking the plot and selecting
Bounds > Edit Bound. Before you simulate the model, click Update Block to update the bound
value in the block parameters.

Typical tasks that you perform in the plot window include:

 Check Step Response Characteristics

1-31

•
Opening the Block Parameters dialog box by clicking or selecting Edit.

•
Finding the block that the plot window corresponds to by clicking or selecting View >
Highlight Simulink Block. This action makes the model window active and highlights the block.

•
Simulating the model by clicking . This action also linearizes the portion of the model between
the specified linearization input and output.

•
Adding a legend on the linear system characteristic plot by clicking .

Show plot on block open — Double-click block to open plot

off (default) | on

Open the plot window instead of the block parameters when you double-click the block in the
Simulink model.

Use this parameter if you prefer to open and perform tasks, such as adding or modifying bounds, in
the plot window instead of the block parameters. If you want to access the block parameters from the

plot window, select Edit or click .

For more information on the plot, see the Show plot parameter.

Programmatic Use
Parameter: LaunchViewOnOpen
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Response Optimization — Open Response Optimizer

button

Open the Response Optimizer to optimize the model response to meet design requirements
specified on the Bounds tab.

See Also

• “Design Optimization to Meet Step Response Requirements (GUI)”
• “Design Optimization to Meet Time-Domain and Frequency-Domain Requirements (GUI)”

Bounds Tab

Include step response bound in assertion — Check that signal satisfies step response
bounds

on (default) | off

Check that the signal satisfies all the step response characteristics specified on the Bounds tab. The
software displays a warning if the signal violates the specified step response characteristics.

To view the specified step response bounds on a plot, click Show Plot.

1 Blocks

1-32

By default, the line segments represent the following step response requirements:

• Amplitude greater than or equal to –0.01 up to the rise time of 5 seconds for 1% undershoot
• Amplitude greater than or equal to 0.8 between 5 and 7 seconds for 80% rise
• Amplitude less than or equal to 1.1 up to the settling time of 7 seconds for 10% overshoot
• Amplitude between 0.99 and 1.01 beyond the settling time for 1% settling

When you disable this parameter, the software stops checking that the input signal satisfies the
bounds during simulation. The bound segments are also grayed out on the plot.

To view only the bounds and input signal on the plot, clear Enable assertion.

 Check Step Response Characteristics

1-33

Dependencies

To use this parameter, on the Assertion tab, select Enable assertion. If you clear Enable
assertion, the software does not use the bounds for assertion, but they continue to appear on the
plot.

Programmatic Use
Parameter: EnableStepResponseBound
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Step time — Time when step response bounds start

0 (default) | nonnegative scalar

Time, in seconds, when the step response bounds start, specified as a finite, real, nonnegative scalar.

To modify the step time value from the plot window, drag the corresponding bound segment.
Alternatively, right-click the segment, and select Edit. Specify the new value in Step time. Click
Update Block before simulating the model.

To check that the input signal satisfies the step time value, select both Include step response
bound in assertion and Enable assertion.

Programmatic Use
Parameter: StepTime
Type: character vector
Value: nonnegative scalar
Default: 0

Initial value — Signal value before step

0 (default) | scalar

Value of the signal before the step occurs, specified as a finite real scalar not equal to the Final value
parameter.

To modify the initial value from the plot window, drag the corresponding bound segment.
Alternatively, right-click the segment, and select Edit. Specify the new value in Initial value. Click
Update Block before simulating the model.

To check that the input signal satisfies the initial value, select both Include step response bound in
assertion and Enable assertion.

Programmatic Use
Parameter: InitialValue
Type: character vector
Value: scalar
Default: 0

Final value — Signal value after step

1 (default) | scalar

1 Blocks

1-34

Value of the signal after the step occurs, specified as a finite real scalar not equal to the Initial value
parameter.

To modify the final value from the plot window, drag the corresponding bound segment. Alternatively,
right-click the segment, and select Edit. Specify the new value in Final value. You must click
Update Block before simulating the model.

To check the input signal satisfies the final value, select both Include step response bound in
assertion and Enable assertion.

Programmatic Use
Parameter: FinalValue
Type: character vector
Value: scalar
Default: 1

Rise time — Time taken to reach specified percentage of step range

5 (default) | positive scalar

Time taken, in seconds, for the signal to reach the percentage of the step range (Final value – Initial
value) specified in % Rise, specified as a finite, positive, real scalar less than the Settling time
parameter.

To modify the rise time from the plot window, drag the corresponding bound segment. Alternatively,
right-click the segment, and select Edit. Specify the new value in Rise time. Click Update Block
before simulating the model.

To check that the input signal satisfies the rise time value, select both Include step response
bound in assertion and Enable assertion.

Programmatic Use
Parameter: RiseTime
Type: character vector
Value: positive scalar
Default: 5

% Rise — Percentage of step range value for rise time

80 (default) | scalar in range 0–100

The percentage of the step range value to use along with Rise time to define the overall rise time
characteristics, specified as a real finite scalar in range 0–100 and less than 100 – % Settling.

To modify the percent rise from the plot window, drag the corresponding bound segment.
Alternatively, right-click the segment, and select Edit. Specify the new value in % Rise. Click Update
Block before simulating the model.

To check that the input signal satisfies the percent rise value, select both Include step response
bound in assertion and Enable assertion.

Programmatic Use
Parameter: PercentRise
Type: character vector
Value: scalar in range 0–100

 Check Step Response Characteristics

1-35

Default: 80

Settling time (seconds) — Time taken to reach settling range

7 (default) | positive scalar

The time taken, in seconds, for the signal to settle within a specified range around the final value,
specified as a finite positive real scalar greater than Rise time. This settling range is defined as the
final value plus or minus the settling range value. Specify the settling range in the % Settling
parameter.

To modify the settling time from the plot window, drag the corresponding bound segment.
Alternatively, right-click the segment, and select Edit. Specify the new value in Settling time. Click
Update Block before simulating the model.

To check that the input signal satisfies the settling time value, select both Include step response
bound in assertion and Enable assertion.
Programmatic Use
Parameter: SettlingTime
Type: character vector
Value: positive scalar
Default: 7

% Settling — Settling range around final value

1 (default) | scalar in range 0–100

The percentage of the step range value (Final value – Initial value) that defines the settling range
of the Settling time characteristic, specified as a finite real scalar in the range 0–100. Specify a
value less than both 100 – % Rise and % Overshoot.

To modify the percent settling from the plot window, drag the corresponding bound segment.
Alternatively, right-click the segment, and select Edit. Specify the new value in % Settling. Click
Update Block before simulating the model.

To check that the input signal satisfies the percent settling value, select both Include step response
bound in assertion and Enable assertion.
Programmatic Use
Parameter: PercentSettling
Type: character vector
Value: scalar in range 0–100
Default: 1

% Overshoot — Amount by which signal can exceed final value

10 (default) | scalar in range 0–100

The amount by which the signal can exceed the final value before settling, specified as a positive real
scalar in the range 0–100 and greater than % Settling. This amount is specified as a percentage of
step range. The step range is the difference between the final and initial values.

To modify the percent overshoot from the plot window, drag the corresponding bound segment.
Alternatively, right-click the segment, and select Edit. Specify the new value in % Overshoot. Click
Update Block before simulating the model.

1 Blocks

1-36

To check that the input signal satisfies the percent overshoot value, select both Include step
response bound in assertion and Enable assertion.

Programmatic Use
Parameter: PercentOvershoot
Type: character vector
Value: scalar in range 0–100
Default: 10

% Undershoot — Amount by which signal can undershoot initial value

1 (default) | scalar in range 0–100

The amount by which the signal can undershoot the initial value before rising, specified as a positive
real scalar in the range 0–100. This amount is specified as a percentage of the step range. The step
range is the difference between the final and initial values.

To modify the percent undershoot from the plot window, drag the corresponding bound segment.
Alternatively, right-click the segment, and select Edit. Specify the new value in % Undershoot. Click
Update Block before simulating the model.

To check that the input signal satisfies the percent undershoot value, select both Include step
response bound in assertion and Enable assertion.

Programmatic Use
Parameter: PercentUndershoot
Type: character vector
Value: scalar in range 0–100
Default: 1

Enable zero-crossing detection — Evaluate model at bound edges

on (default) | off

Ensure that the software simulates the model to produce output at the bound edges. Simulating the
model at the bound edges prevents the simulation solver from missing an assertion that the signal
satisfies that bound at its edge.

For more information, see “Zero-Crossing Detection”.

Programmatic Use
Parameter: ZeroCross
Type: character vector
Value: 'on' | 'off'
Default: 'on'

 Check Step Response Characteristics

1-37

Assertion Tab

Enable assertion — Enable or disable check

on (default) | off

Enable the block to check that bounds specified and included for assertion on the Bounds tab are
satisfied during simulation. Assertion fails if a bound is not satisfied. A warning, reporting the
assertion failure, appears at the MATLAB prompt.

If the assertion fails, you can optionally specify that the block:

• Execute a MATLAB expression, specified in Simulation callback when assertion fails
(optional).

• Stop the simulation and return an error message, by selecting Stop simulation when assertion
fails.

This parameter has no effect if you do not specify any bounds.

When you disable this parameter, the block no longer checks that the input signal satisfies the
specified bounds. The block icon also updates to indicate that assertion is disabled.

In the Simulink model, in the Configuration Parameters, the Model Verification block enabling
parameter lets you enable or disable all model verification blocks in a model, regardless of the setting
of this option in the block.

Programmatic Use
Parameter: enabled
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Simulation callback when assertion fails (optional) — Expression to evaluate
when assertion fails

'' (default) | MATLAB expression

MATLAB expression to execute when assertion fails.

Because the expression is evaluated in the MATLAB workspace, first define all variables used in the
expression in the workspace.

Dependencies

To enable this parameter, select Enable assertion.

Programmatic Use
Parameter: callback

1 Blocks

1-38

Type: character vector
Value: MATLAB expression
Default: ''

Stop simulation when assertion fails — Halt simulation when assertion fails

off (default) | on

Stop the simulation when the input signal violates a bound specified on the Bounds tab during
simulation, that is, when assertion fails.

If you run the simulation from a Simulink model window, the Simulation Diagnostics window opens to
display an error message. The block where the bound violation occurs is highlighted in the model.

Because selecting this option stops the simulation as soon as the assertion fails, the software does not
report assertion failures that might occur later during the simulation. If you want to report all
assertion failures, do not select this option.

Dependencies

To enable this parameter, select Enable assertion.

Programmatic Use
Parameter: stopWhenAssertionFail
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Output assertion signal — Create output signal

off (default) | on

Output a Boolean signal that, at each time step, is:

• True (1) if assertion succeeds, that is, the input signal satisfies all bounds
• False (0) if assertion fails, that is, the input signal violates a bound

The data type of the output signal is double by default. To set the output data type as Boolean for all
blocks that generate logic signals in your Simulink model, select Implement logic signals as Boolean
data in Configuration Parameters.

Selecting this parameter adds an output port to the block that you can connect to any block in the
model.

Use this parameter to design complex assertion logic. For an example, see “Verify Model Using
Simulink Control Design and Simulink Verification Blocks” (Simulink Control Design).

Programmatic Use
Parameter: export
Type: character vector
Value: 'on' | 'off'
Default: 'off'

 Check Step Response Characteristics

1-39

Version History
Introduced in R2011b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Code generation is available only when the Output assertion signal parameter is enabled.

See Also
Check Against Reference | Check Custom Bounds

1 Blocks

1-40

CRMS
Compute continuous-time, cumulative root mean square (CRMS) of signal

Library
Simulink Design Optimization

Description
Attach the CRMS block to a signal to compute its continuous-time, cumulative root mean square
value. Use in conjunction with the Signal Constraint block to optimize the signal energy.

The continuous-time, cumulative root mean square value of a signal u(t) is defined as

R . M . S = 1
T ∫

0

T
u(t) 2dt

The R.M.S value gives a measure of the average energy in the signal.

See Also
DRMS, Signal Constraint

Version History
Introduced in R2009a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Not recommended for production code.

 CRMS

1-41

DRMS
Compute discrete-time, cumulative root mean square (DRMS) of signal

Library
Simulink Design Optimization

Description
Attach the DRMS block to a signal to compute its discrete-time, cumulative root mean square value.
Use in conjunction with the Signal Constraint block to optimize the signal energy.

The discrete-time, cumulative root mean square value of a signal u(ti) is defined as

R . M . S = 1
N ∑i = 1

N
u(ti)

2

The R.M.S value gives a measure of the average energy in the signal.

See Also
CRMS, Signal Constraint

Version History
Introduced in R2009a

1 Blocks

1-42

Signal Constraint
Specify desired signal response

Compatibility

Note Signal Constraint has been removed. Use sdoupdate to replace it with the equivalent block
from the Signal Constraints block library.

Library
Simulink Design Optimization

Version History
Introduced in R2009a

 Signal Constraint

1-43

Classes

2

param.Continuous
Continuous tunable parameter

Description
A continuous parameter is a numeric parameter that can take any value in a specified interval. The
parameter can be scalar-valued or array-valued.

Typically, you use continuous parameters to create parametric models and to estimate or optimize
tunable parameters in such models. For instance, when performing response optimization or
parameter estimation with sdo.optimize, use sdo.getParameterFromModel to create
param.Continuous objects corresponding to parameters in your Simulink model.

Creation
Create a continuous parameter object in one of the following ways.

• sdo.getParameterFromModel to create objects corresponding to continuous-valued parameters
in a Simulink model.

• param.Continuous function.

Syntax
p = param.Continuous(name)
p = param.Continuous(name,value)

Description

p = param.Continuous(name) creates a scalar parameter and sets the Name property. The
remaining properties of the object have default values.

p = param.Continuous(name,value) creates a parameter with the same dimensions as value
and sets the Value property.

Properties
Name — Parameter name
'' (default) | character vector | string scalar

This property is read-only.

Parameter name, specified as a character vector or string scalar and stored as a character vector. Set
Name at object creation.

Value — Parameter value
0 (default) | scalar | array

2 Classes

2-2

Parameter value, specified as a scalar or array. The dimensions of this property determine the
dimensions of the parameter. Set Value at object creation.

Minimum — Lower bound for parameter value
–Inf (default) | scalar | array

Lower bound for the parameter value, specified as a scalar or array. The dimensions of this property
match the dimensions of the Value property.

For array-valued parameters, you can:

• Specify lower bounds on individual array elements, for example, p.Minimum([1 4]) = -5.
• Use scalar expansion to set the lower bound for all array elements. For example, p.Minimum =

-5.

Maximum — Upper bound for parameter value
Inf (default) | scalar | array

Upper bound for the parameter value, specified as a scalar or array. The dimensions of this property
match the dimensions of the Value property.

For array-valued parameters, you can:

• Specify upper bounds on individual array elements. For example, p.Maximum([1 4]) = 5.
• Use scalar expansion to set the upper bound for all array elements. For example, p.Maximum =

5.

Free — Indication of whether parameter is tunable
true or 1 (default) | false or 0 | array

Indication of whether parameter is tunable, specified as numeric or logical 1 (true) or 0 (false) or
an array of such values.

For scalar parameters:

• Free = 1 (true) means the parameter is tunable during optimization.
• Free = 0 (false) means the parameter value is fixed during optimization.

For array-valued parameters, the dimensions of Free match the dimensions of the Value property.
For array-valued parameters, you can:

• Fix individual array elements. For example, p.Free = [1 0; 0 1] fixes the off-diagonal
elements of a 2-by-2 matrix-valued parameter during optimization but allows the diagonal
elements to be tuned. Similarly, p.Free([2 3]) = 0 fixes the second and third elements in p.

• Use scalar expansion to fix all array elements. For example, p.Free = false fixes the values of
all elements of p during optimization.

Scale — Scaling factor
1 (default) | scalar | array

Scaling factor for normalizing the parameter value, specified as a scalar or array. The dimensions of
this property match the dimensions of the Value property.

For array-valued parameters, you can:

 param.Continuous

2-3

• Specify scaling for individual array elements. For example, p.Scale([1 4]) = 1.
• Use scalar expansion to set the scaling for all array elements. For example, p.Scale = 1.

Info — Parameter units and labels
structure

Parameter units and labels, specified as a structure array with fields Label and Unit. The array
dimension must match the dimension of the Value property.

Use this property to store parameter units and labels that describe the parameter. For example,
p.Info(1,1).Unit = 'N/m'; or p.Info(1,1).Label = 'spring constant'.

The default value for both the Label and Unit fields is ''.

Object Functions
isreal Determine if parameter value, minimum, and maximum are real

Examples

Get All Model Parameters as Continuous Design Variables for Optimization

Load a Simulink model.

load_system("sldo_model1_stepblk")

If you do not specify any model parameters, sdo.getParameterFromModel finds all the tunable
parameters in the model and treats them as continuous parameters.

DesignVars = sdo.getParameterFromModel("sldo_model1_stepblk");
DesignVars

DesignVars(1,1) =

 Name: 'Kd'
 Value: 0
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 1
 Info: [1x1 struct]

DesignVars(2,1) =

 Name: 'Ki'
 Value: 0
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 1
 Info: [1x1 struct]

2 Classes

2-4

DesignVars(3,1) =

 Name: 'Kp'
 Value: 1
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 1
 Info: [1x1 struct]

DesignVars(4,1) =

 Name: 'w0'
 Value: 0.5000
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 0.5000
 Info: [1x1 struct]

DesignVars(5,1) =

 Name: 'zeta'
 Value: 0.5000
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 0.5000
 Info: [1x1 struct]

5x1 param.Continuous

Thus, for this model, which has tunable parameters Kd, Ki, Kp, w0, and zeta, the output
DesignVars is an array of five param.Continuous objects. To prepare the parameters for
optimization, you can set the initial value, minimum and maximum values, and free elements of each
parameter as needed. For instance, set the minimum value of Kd to 0.001, the maximum value to 100,
and the initial value to 1.

DesignVars(1).Minimum = 1e-3;
DesginVars(1).Maximum = 100;
DesignVars(1).Value = 1;

Construct Continuous Parameter

Construct a 2-by-2 matrix-valued param.Continuous object and set its initial value to the identity
matrix.

p = param.Continuous('K',eye(2))

p =

 param.Continuous

2-5

 Name: 'K'
 Value: [2x2 double]
 Minimum: [2x2 double]
 Maximum: [2x2 double]
 Free: [2x2 logical]
 Scale: [2x2 double]
 Info: [2x2 struct]

1x1 param.Continuous

Set the maximum value that all entries in p can take during optimization.

p.Maximum = 5;

Assign each entry a different minimum value using a 2-by-2 matrix.

p.Minimum = [-1 -10; 0.02 1];

Suppose instead that you want the diagonal elements of p to remain fixed at 1 during optimization,
but let the off-diagonal elements vary. First, confirm that the current value has diagonal elements
equal to 1. Then, use the Free property to fix the diagonal elements at this value.

p.Value

ans = 2×2

 1 0
 0 1

p.Free = [0 1; 1 0];

Version History
Introduced in R2012b

See Also
sdo.getParameterFromModel | sdo.optimize | param.Discrete

Topics
“Design Optimization to Meet Step Response Requirements (Code)”
“Design Optimization to Meet a Custom Objective (Code)”
Class Attributes
Property Attributes

2 Classes

2-6

param.Discrete
Discrete tunable parameter

Description
A discrete parameter is a parameter that can take one of a specified, finite set of values. The allowed
values can be a set of numeric values or a set of strings. The parameter itself can be scalar-valued or
array-valued. For an array-valued parameter, each free entry in the array can take any of the allowed
values, independently.

Typically, you use discrete parameters to estimate or optimize tunable parameters in parametric
models. For instance, when performing response optimization or parameter estimation with
sdo.optimize, use sdo.getParameterFromModel to create param.Discrete objects
corresponding to parameters in your Simulink model.

Note To use discrete-valued parameters for response optimization or parameter estimation, you must
use the surrogateopt optimization method, specified with sdo.OptimizeOptions.

Creation
Create a discrete parameter object in one of the following ways.

• sdo.getParameterFromModel to create objects corresponding to discrete-valued parameters in
a Simulink model.

• param.Discrete function.

Syntax
p = param.Discrete(name)
p = param.Discrete(name,value)
p = param.Discrete(name,value,valueset)

Description

p = param.Discrete(name) creates a scalar parameter and sets the Name property. The
remaining properties of the object have default values.

p = param.Discrete(name,value) creates a parameter with the same dimensions as value and
sets the Value property.

p = param.Discrete(name,value,valueset) specifies the set of discrete values that the
parameter can take. value must be present in valueset.

Properties
Name — Parameter name
'' (default) | character vector | string scalar

 param.Discrete

2-7

This property is read-only.

Parameter name, specified as a character vector or string scalar and stored as a character vector. Set
Name at object creation.

Value — Parameter value
0 (default) | scalar | array | string scalar | string array

Parameter value, specified as a scalar, array, string scalar, or string array. The dimensions of this
property determine the dimensions of the parameter. The parameter value must be an element in the
ValueSet property.

ValueSet — Allowed parameter values
0 (default) | array | string array

Allowed parameter values, specified as a numerical array or a string array. When you use the
parameter for response optimization or parameter estimation, the optimizer uses only values
specified in this set. Discrete numeric values need not be integers or equally spaced. When using
string values, you must provide a string array, not a cell array of character vectors.

For array-valued parameters, each entry in the parameter can independently take any of the values
specified in ValueSet.
Example: [1.0,1.5,3.0,5.5]
Example: 1:10
Example: ["off","low","high"]

Free — Indication of whether parameter is tunable
true or 1 (default) | false or 0 | array

Indication of whether parameter is tunable, specified as numeric or logical 1 (true) or 0 (false) or
an array of such values.

For scalar parameters:

• Free = 1 (true) means the parameter is tunable during optimization.
• Free = 0 (false) means the parameter value is fixed during optimization.

For array-valued parameters, the dimensions of Free match the dimensions of the Value property.
For array-valued parameters, you can:

• Fix individual array elements. For example, p.Free = [1 0; 0 1] fixes the off-diagonal
elements of a 2-by-2 matrix-valued parameter during optimization but allows the diagonal
elements to be tuned. Similarly, p.Free([2 3]) = 0 fixes the second and third elements in p.

• Use scalar expansion to fix all array elements. For example, p.Free = false fixes the values of
all elements of p during optimization.

Info — Parameter units and labels
structure

Parameter units and labels, specified as a structure array with fields Label and Unit. The array
dimension must match the dimension of the Value property.

2 Classes

2-8

Use this property to store parameter units and labels that describe the parameter. For example,
p.Info(1,1).Unit = 'N/m'; or p.Info(1,1).Label = 'spring constant'.

The default value for both the Label and Unit fields is ''.

Examples

Configure Discrete-Valued Parameters for Optimization or Estimation

Configure variable parameters in a Simulink® model for response optimization or parameter
estimation, where the parameter values are restricted to a specified discrete set of values.

Open the model.

open_system("sdoMotorPosition")

The Controller subsystem is a PI controller whose gains Kp and Ki are set by the values of the
resistors in the voltage divider of the following diagram.

Resistors are commonly manufactured in standard values. Therefore, when using response
optimization to identify suitable values for the resistors R1, R2, R3, and R4, it is useful to confine
these parameters to a discrete set of readily available resistor values. To do so, use
sdo.getParameterFromModel to create param.Discrete parameter objects for each of the
resistors. In this case, because all model parameters you plan to optimize are discrete, use [] for the
continuous parameters.

DesignVars = sdo.getParameterFromModel("sdoMotorPosition",[],["R1","R2","R3","R4"]);

 param.Discrete

2-9

DesignVars is an array of param.Discrete parameter objects, ordered in the order you specified
in the call to sdo.getParameterFromModel. In other words, DesignVars(1) corresponds to R1,
DesignVars(2) corresponds to R2, and so on. For instance, examine the parameter corresponding
to R4.

DesignVars(4)

ans =

 Name: 'R4'
 Value: 10
 ValueSet: 10
 Free: 1
 Info: [1x1 struct]

1x1 param.Discrete

sdo.getParameterFromModel sets both the Value and ValueSet properties to the current values
of the parameters in the Simulink model. To prepare for optimization, set the ValueSet properties of
these parameters to the discrete set of resistor values that each parameter can take.

DesignVars(1).ValueSet = [22,33,47,68,100];
DesignVars(2).ValueSet = [120,150,180,220,270];
DesignVars(3).ValueSet = [6.8,8.2,10,12,15];
DesignVars(4).ValueSet = [6.8,8.2,10,12,15];

You can now continue the response optimization workflow by defining requirements and a cost
function and using sdo.optimize. Note that when you use discrete-valued parameters for either
response optimization or parameter estimation with sdo.optimize, you must set the optimization
method to surrogateopt (see sdo.OptimizeOptions).

Construct Discrete Parameter

Construct a param.Discrete object and set its initial value to the identity matrix.

p = param.Discrete("K1")

p =

 Name: 'K1'
 Value: 0
 ValueSet: 0
 Free: 1
 Info: [1x1 struct]

1x1 param.Discrete

Set the initial value and the values that the parameter can take during optimization. The value set
must include the initial value. Note that the allowed values do not need to be integers or evenly
spaced.

2 Classes

2-10

p.ValueSet = [-10,-5,-2.5,-1,0];
p.Value = -1;

Next, create a string-valued parameter whose initial value is "off". The values that the parameter
can during optimization are "off", "low", "med", and "high". You can optionally specify the initial
value and allowed values all at once when you create the parameter object.

q = param.Discrete("K2","off",["off","low","med","high"])

q =

 Name: 'K2'
 Value: "off"
 ValueSet: ["off" "low" "med" "high"]
 Free: 1
 Info: [1x1 struct]

1x1 param.Discrete

Construct Matrix-Valued Discrete Parameter

Construct a param.Discrete object and set its initial value to the identity matrix.

p = param.Discrete('K',eye(2))

p =

 Name: 'K'
 Value: [2x2 double]
 ValueSet: [1 0]
 Free: [2x2 logical]
 Info: [2x2 struct]

1x1 param.Discrete

Set the values that all entries in p can take during optimization. The value set must include the initial
values. Note that the allowed values do not need to be integers or evenly spaced.

p.ValueSet = [0,0.5,1,10,15,25];

Suppose instead that you want the diagonal elements of p to remain fixed at 1 during optimization,
but let the off-diagonal elements vary. First, confirm that the current value has diagonal elements
equal to 1. Then, use the Free property to fix the diagonal elements at this value.

p.Value

ans = 2×2

 1 0

 param.Discrete

2-11

 0 1

p.Free = [0 1; 1 0];

Version History
Introduced in R2022b

See Also
sdo.getParameterFromModel | sdo.optimize | param.Continuous

Topics
“Discrete-Valued Variables in Response Optimization (Code)”

2 Classes

2-12

param.State class
Package: param
Superclasses: param.Continuous

Specify tuning parameters for model states

Description
A state parameter is a numeric parameter, representing a state associated with a model, that can take
any value in a specified interval. The parameter can take scalar or matrix values.

You use state parameters to estimate or specify the initial state values of a model.

Construction
You obtain a state parameter using the sdo.getStateFromModel function.

For example, use

s = sdo.getStateFromModel('sdoMassSpringDamper','Position');

to obtain the state parameter of the Position block of the sdoMassSpringDamper Simulink model.

Properties
Free

Flag specifying whether the state parameter is tunable or not.

Set the Free property to true (1) for tunable state parameters and false (0) for state
parameters you do not want to tune, to designate them as fixed.

The dimension of this property must match the dimension of the Value property.

For matrix-valued state parameters, you can:

• Fix individual matrix elements. For example, p.Free = [true false; false true] or
p.Free([2 3]) = false.

• Use scalar expansion to fix all matrix elements. For example, p.Free = false.

Default: true (1)

Info

Structure array specifying state parameter units and labels.

The structure has Label and Unit fields.

The array dimension must match the dimension of the Value property.

 param.State class

2-13

Use this property to store state parameter units and labels. For example, p.Info(1,1).Unit =
'N/m'; or p.Info(1,1).Label = 'spring constant'.

Default: '' for both Label and Unit fields

Maximum

Upper bound for the state parameter value.

The dimension of this property must match the dimension of the Value property.

For matrix-valued state parameters, you can:

• Specify upper bounds on individual matrix elements. For example, p.Maximum([1 4]) = 5.
• Use scalar expansion to set the upper bound for all matrix elements. For example p.Maximum =

5.

Default: Inf

Minimum

Lower bound for the state parameter value.

The dimension of this property must match the dimension of the Value property.

For matrix-valued state parameters, you can:

• Specify lower bounds on individual matrix elements. For example p.Minimum([1 4]) = -5.
• Use scalar expansion to set the lower bound for all matrix elements. For example p.Minimum =

-5.

Default: –Inf

Name

State parameter name.

This read-only property is set at object construction.

Default: ''

Scale

Scaling factor used to normalize the state parameter value.

The dimension of this property must match the dimension of the Value property.

For matrix-valued state parameters, you can:

• Specify scaling for individual matrix elements. For example p.Scale([1 4]) = 1.
• Use scalar expansion to set the scaling for all matrix elements. For example p.Scale = 1.

Default: 1

2 Classes

2-14

Value

State parameter value.

You can specify the value as either a scalar or a matrix.

The dimension of this property is set at object construction.

Default: 0

dxFree

Flag specifying whether the state parameter derivative (with respect to time) is tunable or not.

Set the dxFree property to true (1) for tunable state parameter derivatives and false (0) for
state parameter derivatives you do not want to tune (fixed).

The dimension of this property must match the dimension of the Value property.

For matrix-valued state parameter derivatives, you can:

• Fix individual matrix elements. For example p.dxFree = [true false; false true] or
p.dxFree([2 3]) = false.

• Use scalar expansion to fix all matrix elements. For example p.dxFree = false.

Default: true (1)

dxValue

State parameter derivative (with respect to time) value.

The dimension of this property must match the dimension of the Value property.

Default: 0

Methods
Inherited Methods

isreal Determine if parameter value, minimum, and maximum are real

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Get State Parameters from Model

modelname = 'sdoAircraft';
load_system(modelname);
blockpath = {'sdoAircraft/Actuator Model', ...
 'sdoAircraft/Controller/Proportional plus integral compensator'};

 param.State class

2-15

s = sdo.getStateFromModel(modelname,blockpath);

Alternatives
“Specify Known Initial States”

See Also
sdo.getStateFromModel | sdo.Experiment

Topics
“Estimate Model Parameter Values (Code)”
“Estimate Model Parameters and Initial States (Code)”
Class Attributes
Property Attributes

2 Classes

2-16

sdo.AnalyzeOptions class
Package: sdo

Analysis options for sdo.analyze

Syntax
opt = sdo.AnalyzeOptions
opt = sdo.AnalyzeOptions('Method',method_name)

Description
Specify analysis method and method options for sensitivity analysis using sdo.analyze.

Construction
opt = sdo.AnalyzeOptions creates an sdo.AnalyzeOptions object and assigns default values
to the properties.

To change a property value, use dot notation. For example:

opt = sdo.AnalyzeOptions;
opt.Method = 'StandardizedRegression';
opt.MethodOptions = 'Ranked';

opt = sdo.AnalyzeOptions('Method',method_name) sets the value of the Method property to
method_name.

Input Arguments

method_name

Method name, specified as one of the following values: 'Correlation', 'PartialCorrelation',
'StandardizedRegression', or 'All',

For example, method_name = 'PartialCorrelation'.

To use multiple methods, specify method_name as a cell array.

For information about each method, see the Method property description.

Properties
Method

Analysis method used by sdo.analyze, specified as one of the following or a cell array containing a
subset of the following:

• 'Correlation' — Calculates the correlation coefficients, R. Use to analyze how a model
parameter and the cost function outputs are correlated.

 sdo.AnalyzeOptions class

2-17

R is calculated as follows:

R(i, j) = C(i, j)
C(i, i)C(j, j)

C = cov(x, y)
= E[(x− μx)(y − μy)]

μx = E[x]
μy = E[y]

x and y are the input arguments of sdo.analyze.

R values are in the [-1 1] range. The (i,j) entry of R indicates the correlation between x(i) and y(j).

• R(i,j) > 0 — Variables have positive correlation. The variables increase together.
• R(i,j) = 0 — Variables have no correlation.
• R(i,j) < 0 — Variables have negative correlation. As one variable increases, the other

decreases.
• 'PartialCorrelation' (Requires a Statistics and Machine Learning Toolbox™ license) —

Calculates the partial correlation coefficients, R. Use to analyze how a model parameter and the
cost function are correlated, adjusting to remove the effect of the other parameters.

R is calculated using partialcorri in the Statistics and Machine Learning Toolbox software.
• 'StandardizedRegression' — Calculates the standardized regression coefficients, R. Use

when you expect that the model parameters linearly influence the cost function.

R is calculated as follows:

R = bx
σx
σy

Consider a single sample (x1,...,xNp) and the corresponding single output, y. bx is the regression

coefficient vector calculated using least squares assuming a linear model y = b0 + ∑
i = 1

Np
b xixi. R

standardizes each element of bx by multiplying it with the ratio of the standard deviation of the
corresponding x sample (σx) to the standard deviation of y (σy).

• 'All' — The software calculates results for all applicable combinations of Method and
MethodOptions. This option may be time consuming if you have a large sample set with many
parameters and many different cost/constraint outputs.

For x (Ns-by-Np) and y (Ns-by-Nc), all the methods calculate R as an Np-by-Nc table. Here Ns is the
number of samples, Np is the number of model parameters, and Nc is the number of cost/constraint
function evaluations.

Default: 'Correlation'

MethodOptions

Analysis method option that sdo.analyze uses, specified as one of the following values:

• 'Linear' — Pearson analysis.

2 Classes

2-18

Applicable for all methods.
• 'Ranked' — Ranked transformation or Spearman analysis.

Applicable for all methods.
• 'Kendall' — Kendall’s tau.

Applicable when Method is specified as 'Correlation'.
• 'AllApplicable' — Computes each applicable combination of Method and MethodOptions.

Applicable when Method is specified as 'All'.

For more information about these options, see “Analyze Relation Between Parameters and Design
Requirements”.

Default: 'Linear'

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Specify Analysis Options

opt = sdo.AnalyzeOptions;
opt.Method = 'PartialCorrelation';
opt.MethodOptions = 'Ranked';

See Also
sdo.analyze

Topics
Class Attributes
Property Attributes
“Analyze Relation Between Parameters and Design Requirements”

 sdo.AnalyzeOptions class

2-19

sdo.EvaluateOptions class
Package: sdo

Cost function evaluation options for sdo.evaluate

Syntax
opt = sdo.EvaluateOptions
opt = sdo.EvaluateOptions(Name,Value)

Description
Specify options such as evaluation error handling, display settings, and the use of parallel computing
for cost function evaluations using sdo.evaluate.

Construction
opt = sdo.EvaluateOptions creates an sdo.EvaluateOptions object and assigns default
values to the properties.

opt = sdo.EvaluateOptions(Name,Value) creates an sdo.EvaluateOptions object with
additional options specified by one or more Name,Value pair arguments. Name is a property name on
page 2-20 and Value is the corresponding value.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-20 of sdo.EvaluateOptions object
during object creation. For example, opt = sdo.EvaluateOptions('Display','off') creates a
sdo.EvaluateOptions object specifying the Display property as off.

Properties
UseParallel — Parallel computing option
false or 0 (default) | true or 1

Parallel computing option for sdo.evaluate, specified as one of the following:

• false or 0 — Do not use parallel computing during cost function evaluation.
• true or 1 — Use parallel computing during cost function evaluation.

It is recommended that you also specify values for the EvaluatedModel, and
ParallelFileDependencies, or ParallelPathDependencies properties, if needed.

2 Classes

2-20

Parallel Computing Toolbox™ software must be installed to enable parallel computing for the cost
function evaluation.

StopOnEvaluateError — Handling of cost function evaluation error
'off' (default) | 'on'

Handling of cost function evaluation error, specified as one of the following values:

• 'on' — sdo.evaluate stops when a cost function evaluation results in an error.
• 'off' — sdo.evaluate continues when a cost function evaluation results in an error.

sdo.evaluate returns the error using the info output argument.

Display — Viewing of display messages for cost function evaluations
'final' (default) | 'off' | 'iter'

Viewing of display messages for cost function evaluations, specified as one of the following values:

• 'final' — Display only the final output.
• 'off' — Display no output.
• 'iter' — Display the output for each evaluation.

ParallelFileDependencies — File dependencies to use during parallel evaluation
{} (default) | cell array of character vectors

File dependencies to use during parallel evaluation, specified as a cell array of character vectors.
Each character vector can specify either an absolute or relative path to a file. For example,
{'C:\matlab\work\file1.m','C:\matlab\myProject\file2.m'}. These files are copied to
the workers during parallel evaluation. Use sdo.getModelDependencies to find the dependencies
of a Simulink model.

ParallelPathDependencies — Paths to dependencies to use during parallel evaluation
{} (default) | cell array of character vectors

Paths to dependencies to use during parallel evaluation, specified as a cell array of character vectors.
For example, {'C:\matlab\work','C:\matlab\myProject'}. These path dependencies are
temporarily added to the workers during parallel evaluation. Use sdo.getModelDependencies to
find the dependencies of a Simulink model.

EvaluatedModel — Name of Simulink model to be evaluated
'' (default) | character vector

Name of Simulink model to be evaluated, specified as a character vector. For example,
'sldo_model1'.

This property is used to configure the model for parallel evaluation (UseParallel = true).

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

 sdo.EvaluateOptions class

2-21

Create a Default Evaluation Options Object

Create an sdo.EvaluateOptions object.

opt = sdo.EvaluateOptions;

Specify handling of cost function evaluation error.

opt.StopOnEvaluateError = 'on';

Specify Cost Function Evaluation Options

Create an sdo.EvaluateOptions object to view output for each evaluation.

opt = sdo.EvaluateOptions('Display','iter');

See Also
sdo.evaluate | sdo.getModelDependencies

Topics
Class Attributes
Property Attributes
“Use Parallel Computing for Sensitivity Analysis”

2 Classes

2-22

sdo.Experiment
Specify experiment I/O data, model parameters, and initial state values

Description
Use an sdo.Experiment object to associate input and output data with signals in a Simulink model.
Typically, you associate measured data that you collect from an experiment with the corresponding
signals in the model.

You can use the createSimulator function of an experiment to create a simulation object. Use the
simulation object to simulate the model and compare measured and simulated data. If the simulated
response does not match the experimental data, you can estimate model parameter values for which
the model response matches the measured data.

To specify model parameters for estimation, first create an estimation objective function, using the
sdo.Experiment object and experiment design variables, to evaluate design requirements. You can
then use sdo.optimize to estimate the parameter values that satisfy the design requirements. For
more information about the workflow, see “Write a Cost Function” and “Estimate Model Parameter
Values (Code)”.

Creation

Syntax
exp = sdo.Experiment(modelname)

Description

exp = sdo.Experiment(modelname) creates an sdo.Experiment object and sets the
ModelName property. The remaining properties have default values.

Properties
InitialStates — Model initial state
[] (default) | param.State object | vector of param.State objects

Model initial state for the experiment, specified as a param.State object or vector of param.State
objects.

• To specify a single initial state, use a param.State object.
• To specify multiple initial states, use a vector of param.State objects.

To obtain model initial states from a Simulink model, use sdo.getStateFromModel.

Use this property only for specifying initial states that differ from the initial state values defined in
the model.

 sdo.Experiment

2-23

• To estimate the value of an initial state, set the Free property of the initial state to true.

When you have multiple experiments for a given model, you can estimate model initial states on a
per-experiment basis. To do so, specify the model initial states for each experiment. You can
optionally specify an initial guess for the initial state values for any of the experiments using the
Value property of the state parameters.

• To specify an initial state value as a known quantity, not to be estimated, set its Free property to
false.

After specifying the initial states that you are estimating for an experiment, use
getValuesToEstimate. getValuesToEstimate returns a vector of all the model parameters and
initial states that you want to estimate. You use this vector as an input to sdo.optimize to specify
the parameters that you want to estimate.

InputData — Experiment input data
[] (default) | data object

Experiment input data, specified as a data object. Use this property to specify signals to apply to root-
level input ports. For information on supported forms of input data, see “Forms of Input Data”.

ModelName — Model name associated with experiment
'' (default) | character vector | string

Simulink model name associated with the experiment, specified as a character vector or string.

The model must be available on the MATLAB path.
Example: 'spe_engine_throttle'

OutputData — Experiment output data
[] (default) | Simulink.SimulationData.Signal object | vector of
Simulink.SimulationData.Signal objects

Experiment output data, specified as a Simulink.SimulationData.Signal object or vector of
Simulink.SimulationData.Signal objects.

• To specify a single output signal, use a Simulink.SimulationData.Signal object.
• To specify multiple output signals, use a vector of Simulink.SimulationData.Signal objects.

Parameters — Model parameter values
[] (default) | param.Continuous object | vector of param.Continuous objects

Model parameter values for the experiment, specified as a param.Continuous object or vector of
param.Continuous objects.

• To specify a value for a single parameter, use a param.Continuous object.
• To specify values for multiple parameters, use a vector of param.Continuous objects.

To obtain model parameters from a Simulink model, use sdo.getParameterFromModel.

Use this property only for specifying parameter values that differ from the parameter values defined
in the model.

• To estimate the value of a parameter, set the Free property of the parameter to true.

2 Classes

2-24

When you have multiple experiments for a given model, you can:

• Estimate a model parameter on a per-experiment basis. To do so, specify the model parameter
for each experiment. You can optionally specify the initial guess for the parameter value for
any of the experiments using the Value property.

• Estimate one value for a model parameter using all the experimental data. To do so, do not
specify the model parameter for the experiments. Instead, call sdo.optimize with the model
parameter directly.

For an example of estimating model parameters on a per-experiment basis and using data from
multiple experiments, see “Estimate Model Parameters Per Experiment (Code)”.

• To specify a parameter value as a known quantity (not to be estimated), set its Free property to
false.

After specifying the parameters that you are estimating for an experiment, use
getValuesToEstimate. getValuesToEstimate returns a vector of all the model parameters and
initial states that you want to estimate. You use this vector as an input to sdo.optimize to specify
the parameters that you want to estimate.

Name — Experiment name
[] (default) | character vector | string

Experiment name, specified as a character vector or string.
Example: 'Exp1'

Description — Experiment description
[] (default) | character vector | string

Experiment description, specified as a character vector or string.
Example: 'Pendulum experiment 1'

Object Functions
createSimulator Create simulation object from experiment to compare measured and

simulated data
getValuesToEstimate Get model initial states and parameters for estimation from experiment
prepareToDeploy Configure experiment for deployment with Simulink Compiler
setEstimatedValues Update experiments with estimated model initial states and parameter values
updateIOData Update experiment input and output data

Examples

Specify Input/Output Data for Parameter Estimation

Load the measured experiment data.

load sdoBattery_ExperimentData

The variable Charge_Data, which contains the data measured during a battery charging experiment,
is loaded into the MATLAB® workspace. The first column contains time data. The second and third
columns contain the current and voltage data, respectively.

 sdo.Experiment

2-25

Specify an experiment for a model.

modelname = 'sdoBattery';
exp = sdo.Experiment(modelname);
exp.Name = 'Charging';
exp.Description = 'Battery charging data collected on March 15, 2013.';

Specify input data for the experiment.

exp.InputData = timeseries(Charge_Data(:,2),Charge_Data(:,1));

Specify output data for the experiment.

VoltageSig = Simulink.SimulationData.Signal;
VoltageSig.Name = 'Voltage';
VoltageSig.BlockPath = 'sdoBattery/SOC -> Voltage';
VoltageSig.PortType = 'outport';
VoltageSig.PortIndex = 1;
VoltageSig.Values = timeseries(Charge_Data(:,3),Charge_Data(:,1));

exp.OutputData = VoltageSig;

Alternatives
“Estimate Parameters and States”

Version History
Introduced in R2012b

See Also
sdo.optimize | sdo.getStateFromModel | param.Continuous | param.State

Topics
“Estimate Model Parameter Values (Code)”
“Estimate Model Parameters and Initial States (Code)”
“Estimate Model Parameters Using Multiple Experiments (Code)”
“Estimate Model Parameters Per Experiment (Code)”
“Estimate Model Parameters with Parameter Constraints (Code)”
Class Attributes
Property Attributes

2 Classes

2-26

sdo.OperatingPointSetup class
Package: sdo

Set up steady-state operating point computation

Syntax
OpPointSetup = sdo.OperatingPointSetup(opSpec,inputsToUse,statesToUse)
OpPointSetup = sdo.OperatingPointSetup(___ ,[findopOpts])

Description
An operating point of a dynamic system defines the states and root-level input signals of the model at
a specific time. For example, in a car engine model, variables such as engine speed, throttle position,
engine temperature, and surrounding atmospheric conditions typically describe the operating point.

A steady-state operating point of a model, also called an equilibrium or trim condition, includes state
variables that do not change with time. A model can have several steady-state operating points. For
example, a simple, damped pendulum has two steady-state operating points at which the pendulum
position does not change with time.

Use sdo.OperatingPointSetup to set a model to steady-state as part of model optimization or
evaluation. This step is useful when you are performing optimization or estimation using data
measured when the system was at a non-zero steady state. Matching the model state to the system
state, used for data collection, helps reduce model transients and improves results.

You need the Simulink Control Design toolbox to use sdo.OperatingPointSetup.

Construction
OpPointSetup = sdo.OperatingPointSetup(opSpec,inputsToUse,statesToUse) creates
an sdo.OperatingPointSetup object using the operating point specifications opSpec, inputs
inputsToUse, and states statesToUse.

OpPointSetup = sdo.OperatingPointSetup(___ ,[findopOpts]) creates an
sdo.OperatingPointSetup object using additional arguments specified using findopOpts.

Input Arguments

opSpec — Operating point specifications
operating point specification object | []

Operating point specifications, specified as an operating point specification object, or empty []. Use
operspec to create the opSpec object.

Also a property of the sdo.operatingPointSetup object. For more information, see
OperatingPointSpec.

inputsToUse — Inputs to use for operating point setup
vector of indices | cell array of block paths | []

 sdo.OperatingPointSetup class

2-27

Inputs to use for operating point setup, specified as a vector of indices, a cell array of block paths, or
empty [].

You can specify the inputs to use as:

• A vector of indices. For example, you can use the input argument inputsToUse as:

inputsToUse = [2 3]

• A cell array of block paths. For example, you can use the input argument inputsToUse as:

inputsToUse = {'modelname/in2','modelname/in3'}

• An empty array [] if you do not want to use any of the inputs.

When an input is supplied by experiment data in parameter estimation, that input should not be
included among inputsToUse.

Also a property of the sdo.operatingPointSetup object. For more information, see
UseOperatingPointInputs.

statesToUse — States to use for operating point setup
vector of indices | cell array of block paths | []

States to use for operating point setup, specified as a vector of indices, a cell array of block paths, or
empty [].

You can specify the states to use as:

• A vector of indices. If you specify statesToUse as a vector of indices, the states should be in the
same order as the states in opSpec. For example, you can use the input argument statesToUse
as:

statesToUse = [2 3]

• A cell array of block paths. For example, you can use the input argument statesToUse as:

statesToUse = {'modelname/in2','modelname/in3'}

• An empty array [] if you do not use any of the states.

Also a property of the sdo.OperatingPointSetup object. For more information, see
UseOperatingPointStates.

findopOpts — Trimming options to find operating point from specification
findopOptions option set

Trimming options to find operating point from specification, specified as a findopOptions option
set. Use the findopOptions command to create the findopOpts option set.

Also a property of the sdo.OperatingPointSetup object. For more information, see
FindopOptions.

Properties
OperatingPointSpec — Operating point specification for Simulink model
operating point specification object | []

2 Classes

2-28

Operating point specification for Simulink model, specified as an operating point specification object,
or empty [].

Use operspec to create operating point specifications for your Simulink model, and create an
operating point specification object, opSpec. For example, for components of the specification
related to the states, you can change Known, SteadyState, Min, Max, dxMin, and dxMax.

You can modify the operating point specifications using dot notation. For example, if opSpec is the
operating point specification object, opSpec.States(1).x accesses the state values of the first
model state.

For more information on operating point specifications, see operspec.

UseOperatingPointInputs — Inputs to use for operating point setup
vector of indices | cell array of block paths | []

Inputs to use for operating point setup, specified as a vector of indices, a cell array of block paths, or
empty [].

Use UseOperatingPointInputs to specify the inputs in the operating point to be applied to the
model. When an input is supplied by experiment data, that input should not be included among
UseOperatingPointInputs.

You can specify the inputs to use as:

• A vector of indices. For example, you can use the property UseOperatingPointInputs to
specify the inputs to use as:

OpPointSetup.UseOperatingPointInputs = [2 3]

where OpPointSetup is the sdo.OperatingPointSetup object.
• A cell array of block paths. For example, you can use the property UseOperatingPointInputs

to specify the inputs to use as:

OpPointSetup.UseOperatingPointInputs = {'modelname/in2','modelname/in3'}

where OpPointSetup is the sdo.OperatingPointSetup object.
• An empty array [] if you do not want to use any of the inputs.

UseOperatingPointStates — States to use for operating point setup
vector of indices | cell array of block paths | []

States to use for operating point setup, specified as a vector of indices, a cell array of block paths, or
empty [].

Use UseOperatingPointStates to specify the states in the operating point to be applied to the
model.

You can specify the states to use as:

• A vector of indices. If you specify UseOperatingPointStates as a vector of indices, the states
should be in the same order as the states in OperatingPointSpec.For example, you can use the
property UseOperatingPointStates to specify the states to use as:

OpPointSetup.UseOperatingPointStates = [2 3]

 sdo.OperatingPointSetup class

2-29

where, OpPointSetup is the sdo.OperatingPointSetup object.
• A cell array of block paths. For example, you can use the property UseOperatingPointStates

to specify the states to use as:

OpPointSetup.UseOperatingPointStates = {'modelname/in2','modelname/in3'}

where, OpPointSetup is the sdo.OperatingPointSetup object.
• An empty array [] if you do not use any of the states.

FindopOptions — Trimming options to find operating points from specifications
findopOptions option set

Trimming options to find operating point from specification, specified as a findopOptions option
set.

Use the findopOptions command to create a FindopOptions option set for operating point
computation. For more information, see findopOptions.

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create a Steady-State Operating Point Object

For this example, consider a Simulink model 'PopulationModel' which models a simple ecology
where an organism population growth is limited by the carrying capacity of the environment.

Set up your requirement or experiment, and then define a steady-state operating point object
OpPointSetup. The operating point specification object is created using operspec. Use
sdo.OperatingPointSetup to create the operating point object.

opSpec = operspec('PopulationModel');
inputsToUse = [];
statesToUse = 1;
OpPointSetup = sdo.OperatingPointSetup(opSpec,inputsToUse,statesToUse)

OpPointSetup =
 OperatingPointSetup with properties:

 OperatingPointSpec: [1x1 opcond.OperatingSpec]
 UseOperatingPointInputs: []
 UseOperatingPointStates: 1
 FindopOptions: []

Pass the operating point object OpPointSetup to your objective function, and include
OpPointSetup in the call function to the sim method of the sdo.SimulationTest object. The sim
method computes a steady-state operating point and applies it to the model. Specifically, it applies the
operating point inputs specified in UseOperatingPointInputs, and applies the operating point
states specified in UseOperatingPointStates. Then perform estimation or optimization per your
requirement.

2 Classes

2-30

Version History
Introduced in R2018a

See Also
findopOptions | operspec | sim | sdo.SimulationTest

Topics
“Set Model to Steady-State When Estimating Parameters (Code)”
“What Is an Operating Point?” (Simulink Control Design)
“What Is a Steady-State Operating Point?” (Simulink Control Design)
“Compute Steady-State Operating Points” (Simulink Control Design)

 sdo.OperatingPointSetup class

2-31

sdo.OptimizeOptions
Optimization option set for sdo.optimize function

Description
Use an sdo.OptimizeOptions object to specify options for solving a design optimization problem
using the sdo.optimize function. You can specify options such as a solver method, solver options,
and the use of parallel computing during optimization.

Creation

Syntax
opt = sdo.OptimizeOptions
opt = sdo.OptimizeOptions(Name,Value)

Description

opt = sdo.OptimizeOptions creates a default option set for solving a design optimization
problem using the sdo.optimize function. To modify the properties of this option set for your
specific application, use dot notation.

opt = sdo.OptimizeOptions(Name,Value) creates an option set with properties on page 2-32
specified using one or more name-value arguments.

Properties
Method — Optimization solver
'fmincon' (default) | 'fminsearch' | 'lsqnonlin' | 'patternsearch' | 'surrogateopt'

Optimization solver that sdo.optimize uses to solve the optimization problem, specified as one of
the following values:

• 'fmincon' — Default for design optimization, derivative based method, allows nonlinear
constraints and parameter bounds.

• 'fminsearch' — Derivative-free method.
• 'lsqnonlin' — Default for parameter estimation. This method works with gradient of residual

between model output and data and allows parameter bounds.
• 'patternsearch' — Derivative-free method. This method allows nonlinear constraints and

parameter bounds. Pattern search requires Global Optimization Toolbox software.
• 'surrogateopt' — Surrogate-based method. This method allows nonlinear constraints and

discrete-valued parameters. The method requires parameter bounds. Using surrogate-based
optimization requires Global Optimization Toolbox software.

See the Optimization Toolbox™ and Global Optimization Toolbox documentation for more information
on these solvers.

2 Classes

2-32

MethodOptions — Optimization solver options
[1x1 optim.options.Fmincon] (default) | options object created using optimoptions

Optimization solver options, specified as an optimization options object, created using
optimoptions. The options are configured based on the Method property. Because 'fmincon' is
the default optimization solver method, the default value for this property is an optimoptions
object for fmincon solver. For information about the available optimization solver options, consult
the options table for your solver based on the Method specified:

• fmincon options
• fminsearch options
• lsqnonlin options
• patternsearch options
• surrogateopt options

To modify the solver options, use dot notation. For example, opt.MethodOptions.StepTolerance
= 1.5e-3.

Restarts — Number of times to restart optimization
0 (default) | nonnegative integer

Number of times to restart optimization if convergence criteria are not satisfied, specified as a
nonnegative integer. At each restart, the initial values of the tunable parameters are set to the final
value of the previous optimization run.

StopIfFeasible — Option to stop optimization once feasible solution is found
'on' (default) | 'off'

Option to stop optimization once a feasible solution satisfying constraints is found, specified as one of
the following values:

• 'on' — Terminate as soon a feasible solution is found.
• 'off' — Continue to search for solutions that are typically located further inside the constraint

region.

The software ignores this option when you track a reference signal or your problem has a cost.

GradFcn — Option to return gradient information from cost or constraint function
'off' (default) | 'on'

Option to specify that the cost or constraint function you provide to sdo.optimize provides gradient
information, specified as one of the following values:

• 'off' — Your cost or constraint function does not provide gradient information. The software
uses central differences to compute the gradients.

• 'on' — Your cost or constraint function provides gradient information as one of its output
arguments.

UseParallel — Parallel computing option
false or 0 (default) | true or 1

Parallel computing option for fmincon, lsqnonlin, and patternsearch optimization solvers,
specified as one of the following:

 sdo.OptimizeOptions

2-33

• false or 0 — Do not use parallel computing during optimization.
• true or 1 — Use parallel computing during optimization.

Parallel Computing Toolbox software must be installed to enable parallel computing for the
optimization methods.

When set to true, the methods compute the following in parallel:

• fmincon — Finite difference gradients
• lsqnonlin — Finite difference gradients
• patternsearch — Poll and search set evaluation

Note Parallel computing is not supported for fminsearch.

For parallel computing, specify a simulation scenario for the Simulink model to optimize as an
sdo.SimulationTest object in the OptimizedModel property. You can specify model file
dependencies in the ParallelFileDependencies property, or you can specify paths to
dependencies in the ParallelPathDependencies property, if needed.

ParallelFileDependencies — File dependencies to use during parallel optimization
{} (default) | cell array of character vectors

File dependencies to use during parallel optimization, specified as a cell array of character vectors.
Each character vector can specify either an absolute or relative path to a file. These files are copied
to the workers during parallel optimization. Use sdo.getModelDependencies to find the
dependencies of a Simulink model.
Example: opt.ParallelFileDependencies = {'C:\matlab\work\file1.m','C:\matlab
\myProject\file2.m'}

ParallelPathDependencies — Paths to dependencies to use during parallel optimization
{} (default) | cell array of character vectors

Paths to dependencies to use during parallel optimization, specified as a cell array of character
vectors. If you do not want to copy the files to workers, use this property instead of the
ParallelFileDependencies property. These path dependencies are temporarily added to the
workers during parallel optimization. Use sdo.getModelDependencies to find the dependencies of
a Simulink model.
Example: opt.ParallelPathDependencies = {'C:\matlab\work','C:\matlab
\myProject'}

OptimizedModel — Name of Simulink model to optimize
'' (default) | sdo.SimulationTest object | character vector

Name of Simulink model to optimize, specified as either an sdo.SimulationTest object or a
character vector with the name of the model.

Specify OptimizedModel as an sdo.SimulationTest object when using both parallel optimization
(UseParallel = true) and fastRestart.

Parallel Computing Toolbox software must be installed to enable parallel optimization.

2 Classes

2-34

Example: Simulator = sdo.SimulationTest('model_demo')

Object Functions
sdo.optimize Solve design optimization problem

Examples

Create Default Optimization Options Object

Create a default sdo.OptimizeOptions option set.

opt = sdo.OptimizeOptions;

Specify options using dot notation.

opt.Method = 'lsqnonlin';
opt.GradFcn = 'on';

Any property values you do not specify remain at their default values.

Specify Optimization Solver

Create an option set object that specifies nonlinear least-squares optimization solver as its solving
method.

opt = sdo.OptimizeOptions('Method','lsqnonlin')

opt =
 OptimizeOptions with properties:

 Method: 'lsqnonlin'
 MethodOptions: [1x1 optim.options.Lsqnonlin]
 Restarts: 0
 StopIfFeasible: 'on'
 GradFcn: 'off'
 UseParallel: 0
 ParallelPathDependencies: {}
 ParallelFileDependencies: {}
 OptimizedModel: ''

You can modify solver options using dot notation. For example, set the solver algorithm to the
Levenberg-Marquardt method.

opt.MethodOptions.Algorithm = 'levenberg-marquardt';

View the method options.

opt.MethodOptions

ans =
 lsqnonlin options:

 sdo.OptimizeOptions

2-35

 Options used by current Algorithm ('levenberg-marquardt'):
 (Other available algorithms: 'trust-region-reflective')

 Set properties:
 Algorithm: 'levenberg-marquardt'
 Display: 'iter'
 FunctionTolerance: 1.0000e-03
 MaxFunctionEvaluations: Inf
 MaxIterations: 100
 SpecifyObjectiveGradient: 1
 StepTolerance: 1.0000e-03

 Default properties:
 CheckGradients: 0
 FiniteDifferenceStepSize: 'sqrt(eps)'
 FiniteDifferenceType: 'forward'
 OutputFcn: []
 PlotFcn: []
 TypicalX: 'ones(numberOfVariables,1)'
 UseParallel: 0

 Show options not used by current Algorithm ('levenberg-marquardt')

Any property values you do not specify remain at their default values.

Version History
Introduced in R2011a

See Also
sdo.optimize | sdo.getModelDependencies | fastRestart

Topics
“Specify Optimization Options”
“Speed Up Response Optimization Using Parallel Computing”
“Speed Up Parameter Estimation Using Parallel Computing”

2 Classes

2-36

sdo.ParameterSpace class
Package: sdo

Specify probability distributions for model parameters

Description
Specify the probability distributions for model parameters, which define the parameter space. You
use the sdo.ParameterSpace object as an input to the sdo.sample command and generate
samples of the model parameters. The software generates these samples as per the distributions
specified for each parameter. You evaluate the cost function for each of these samples using the
sdo.evaluate command and analyze how the model parameters influence the cost function.

Construction
ps = sdo.ParameterSpace(p) creates an sdo.ParameterSpace object for the specified model
parameters. The software assigns the parameter names to the ParameterNames property and
default values to the remaining properties, including ParameterDistributions. The software
specifies the uniform distribution for each parameter in p and sets the values of the two parameters
of the uniform distribution as follows:

• Lower — Set to p.Minimum. If p.Minimum is equal to -Inf, then the software sets Lower to
0.9*p.Value. Unless p.Value is equal to 0, in which case the software sets Lower to -1.

• Upper — Set to p.Maximum. If p.Maximum is equal to Inf, then the software sets Upper to
1.1*p.Value. Unless p.Value is equal to 0, in which case the software sets Upper to 1.

ps = sdo.ParameterSpace(p,pdist) specifies the distribution of each parameter.

Input Arguments

p

Model parameters and states, specified as a vector of param.Continuous objects.

For example, sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'}).

pdist

Probability distribution of model parameters, specified as a vector of univariate probability
distribution objects.

• If pdist is the same size as p, the software specifies each entry of pdist as the probability
distribution of the corresponding parameter in p.

• If pdist contains only one object, the software specifies this object as the probability distribution
for all the parameters in p.

Use the makedist command to create a univariate probability distribution object. For example,
makedist('Normal','mu',100,'sigma',10).

To check if pdist is a univariate distribution object, run
isa(pdist,'prob.UnivariateDistribution').

 sdo.ParameterSpace class

2-37

Properties
ParameterNames

Model parameter names, specified as cell arrays of character vectors. For example, {'Kp','Ki'}.

This property is ready only.

Default: ''

ParameterDistributions

Model parameter distributions, specified as a vector of prob.UnivariateDistribution objects.

By default, the software specifies a uniform distribution for the model parameters specified by p. For
each parameter, the software sets the values of the two parameters of the uniform distribution:

• Lower — Set to p.Minimum. If p.Minimum is equal to -Inf, then the software sets Lower to
0.9*p.Value. Unless p.Value is equal to 0, in which case the software sets Lower to -1.

• Upper — Set to p.Maximum. If p.Maximum is equal to Inf, then the software sets Upper to
1.1*p.Value. Unless p.Value is equal to 0, in which case the software sets Upper to 1.

Use the pdist input argument when constructing ps to set the value of this property. Alternatively,
use the setDistribution method after you have constructed ps.

Default: []

RankCorrelation

Correlation between parameters, specified as a matrix.

When you call sdo.sample, the software generates samples that are correlated as specified by this
matrix (where the correlation refers to ranked correlation). You can specify the sampling method
using the Method property of an sdo.SampleOptions.

• If you specify Method as 'random', 'lhs', 'sobol', or 'halton' the software uses the Iman-
Conover algorithm to impose the correlation specified by RankCorrelation.

• If you specify Method as 'copula', the software uses a copula to impose the correlation specified
by RankCorrelation. Use the MethodOptions property of the sdo.SampleOptions object to
specify the copula family and to specify the degrees of freedom if using the t copula family.

Specify [] when the parameters are uncorrelated.

Default: []

Options

Sampling method options, specified as an sdo.SampleOptions object.

Default: sdo.SampleOptions

Notes

Text notes associated with ps, specified as a character vector or cell array of character vectors. For
example, 'notes for ps'.

2 Classes

2-38

Default: ''

Default:

Methods

addParameter Add parameter to sdo.ParameterSpace object
removeParameter Remove parameter from sdo.ParameterSpace object
setDistribution Set distribution of parameter in sdo.ParameterSpace object

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Specify Parameter Distributions for Sampling

Obtain the model parameters of interest.

load_system('sdoHydraulicCylinder');
p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

Construct an sdo.ParameterSpace object for Ac and K.

ps = sdo.ParameterSpace(p);

You can use ps as an input to sdo.sample and generate samples. By default, the software specifies a
uniform distribution for both parameters.

Suppose you want to specify the normal distribution for Ac and the uniform distribution for K, with K
in the [30000 70000] range.

pdistAc = makedist('Normal','mu',p(1).Value,'sigma',2);
pdistK = makedist('Uniform','lower',30000,'upper',70000);
ps1 = sdo.ParameterSpace(p,[pdistAc;pdistK]);

See Also
addParameter | sdo.sample | sdo.getParameterFromModel | makedist

Topics
Class Attributes
Property Attributes

 sdo.ParameterSpace class

2-39

sdo.requirements.BodeMagnitude class
Package: sdo.requirements

Bode magnitude bound

Syntax
bode_req = sdo.requirements.BodeMagnitude
bode_req = sdo.requirements.BodeMagnitude(Name,Value)

Description
Specify frequency-dependent piecewise-linear upper and lower magnitude bounds on a linear system.
You can then optimize your model to meet the requirements using sdo.optimize.

You can specify upper or lower bounds, include multiple linear edges, and extend them to + or –
infinity.

You must have Simulink Control Design software to specify bode magnitude requirements.

Construction
bode_req = sdo.requirements.BodeMagnitude creates an
sdo.requirements.BodeMagnitude object and assigns default values to its properties.

bode_req = sdo.requirements.BodeMagnitude(Name,Value) uses additional options
specified by one or more Name,Value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-40 of the requirement object during
object creation. For example, requirement =
sdo.requirements.BodeMagnitude('Type','>=') creates an
sdo.requirements.BodeMagnitude object and specifies the Type property as a lower bound.

Properties
BoundFrequencies

Frequency values for the gain bound.

2 Classes

2-40

Specify the start and end frequencies for all the edges in the piecewise-linear bound. The property
must be a nx2 array of finite doubles, where each row specifies the start and end frequencies of an
edge in the piecewise-linear bound. The start and end frequencies must define a positive length. The
number of rows must match the number of rows of the BoundMagnitudes property.

Use set to set this and the BoundMagnitudes properties simultaneously.

Use the FrequencyUnits property to specify the frequency units.

Default: [1 10]

BoundMagnitudes

Magnitude values for the gain bound.

Specify the start and end gain values for all the edges in the piecewise-linear bound. The property
must be a nx2 array of finite doubles where each row specifies the start and end gains of an edge in
the piecewise-linear bound. The number of rows must match the number of rows of the
BoundFrequencies property.

Use set to set this and the BoundFrequencies properties simultaneously.

Use the MagnitudeUnits property to specify the magnitude units.

Default: [0 0]

Description

Requirement description, specified as a character vector. For example, 'Requirement on signal
1'.

Default: ''

FrequencyScale

Frequency-axis scaling.

Use this property to determine the value of the bound between edge start and end points, specified as
one of the following values:

• 'linear'
• 'log'

For example, if bound edges are at frequencies f1 and f2, and the bound is to be evaluated at f3, the
edges are interpolated as a straight lines. The x-axis is either linear or logarithmic.

Default: 'log'

FrequencyUnits

Frequency units of the requirement, specified as one of the following values:

• 'Hz'
• 'rad/s'

 sdo.requirements.BodeMagnitude class

2-41

• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

Default: 'rad/s'

MagnitudeUnits

Magnitude units of the requirement. Must be:

• 'db' (decibels)
• 'abs' (absolute units)

Default: 'db'

Name

Requirement name, specified as a character vector.

Default: ''

OpenEnd

Extend bound in a negative or positive frequency direction.

Specify whether the first and last edge of the bound extends to –inf and +inf respectively. Use to
bound signals that extend beyond the frequency values specified by the BoundFrequencies
property.

2 Classes

2-42

Must be a 1x2 logical array of true or false. If true, the first or last edge of the piecewise linear
bound is extended in the negative or positive direction.

Default: [0 0]

Type

Magnitude bound type. Must be:

• '<=' — Upper bound
• '>=' — Lower bound

Use to specify whether the piecewise-linear bound is an upper or lower bound. Use for upper bound
and for lower bound.

Methods

evalRequirement Evaluate Bode magnitude bound for linear system

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Construct a Bode magnitude requirements object and specify bound frequencies and magnitudes.

r = sdo.requirements.BodeMagnitude;
set(r,'BoundFrequencies', [0.1 10; 10 100],...
'BoundMagnitudes',[1 1; 0.1 0.1])

Alternatively, you can specify the frequency and magnitude during construction.

r = sdo.requirements.BodeMagnitude(...
 'BoundFrequencies', [1 10; 10 100], ...
 'BoundMagnitudes', [1 1; 1 0]);

Alternatives
Use getbounds to get the bounds specified in a Check Bode Characteristics block.

See Also
copy | get | set

Topics
Class Attributes
Property Attributes

 sdo.requirements.BodeMagnitude class

2-43

sdo.requirements.ClosedLoopPeakGain class
Package: sdo.requirements

Closed loop peak gain bound

Description
Specify lower or equality bounds on the closed loop peak gain of a linear system. The closed loop can
be formed using negative, positive or no feedback. You can then optimize the model response to meet
these bounds using sdo.optimize.

You must have Simulink Control Design software to specify closed-loop peak gain bounds.

Construction
pkgain_req = sdo.requirements.ClosedLoopPeakGain creates a
sdo.requirements.ClosedLoopPeakGain object and assigns default values to its properties.

pkgain_req = sdo.requirements.ClosedLoopPeakGain(Name,Value) uses additional
options specified by one or more Name,Value pair arguments. Name is a property name and Value is
the corresponding value. Name must appear inside single quotes (''). You can specify several name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-44 of the requirement object during
object creation. For example, requirement =
sdo.requirements.ClosedLoopPeakGain('Type','<=') creates an
sdo.requirements.ClosedLoopPeakGain object and specifies the Type property as an upper
bound.

Properties
Description

Requirement description, specified as a character vector. For example, 'Requirement on signal
1'.

Default: ''

FeedbackSign

Feedback loop sign to determine the peak gain of the linear system.

2 Classes

2-44

Must be –1 or 1. Use –1 if the loop has negative feedback and 1 if the loop has positive feedback.

Default: –1

MagnitudeUnits

Magnitude units of the requirement.

Must be 'db' (decibels) or 'abs' (absolute units).

Default: 'abs'

Name

Requirement name, specified as a character vector.

Default: ''

PeakGain

Peak gain bound.

Default: 2

Type

Peak gain requirement type, specified as one of the following:

• '<=' — Upper bound
• '==' — Equality bound
• 'min' — Minimization objective

Default: '<='

Methods

evalRequirement Evaluate peak gain bound for linear system

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Construct a closed loop peak gain object and specify peak gain requirement.

r = sdo.requirements.ClosedLoopPeakGain;
r.PeakGain = 2;

Alternatively, you can specify the peak gain during construction:

r = sdo.requirements.ClosedLoopPeakGain('PeakGain',2);

 sdo.requirements.ClosedLoopPeakGain class

2-45

Alternatives
Use getbounds to get the bounds specified in Check Nichols Characteristics block.

See Also
copy | get | set

Topics
Class Attributes
Property Attributes

2 Classes

2-46

sdo.requirements.FunctionMatching class
Package: sdo.requirements

Impose function matching constraint on variable

Description
Use the sdo.requirements.FunctionMatching object to impose a function matching constraint
on the values of a variable in a Simulink model. The variable can be a vector, matrix, or a
multidimensional array that is a parameter in your model, such as the data of a lookup table in your
model. You create the requirement object, and specify the linear or quadratic function that you want
the variable to match. For example, for a two-dimensional variable, you can specify that test data
from dependent variable V match a linear function of independent variables X1 and X2:

V = a0 + a1X1 + a2X2

Where, a0, a1, and a2 are the fit-coefficients, and X1 and X2 are vectors.

You use the evalRequirement method to evaluate whether your test data satisfies the specified
requirement, and specify the independent variable vectors as inputs to the method. The software
calculates the fit-coefficients using the independent variables and test data and then calculates the
error between the test data and the specified function of the independent variables.

You can use the requirement object as an input to your cost function and use the evalRequirement
command in the cost function to evaluate the requirement. You can then use the cost function and
sdo.optimize to perform response optimization, subject to satisfaction of the specified
requirement. If you are performing sensitivity analysis, after you generate parameter samples, you
can use the cost function and sdo.evaluate to evaluate the requirement for each generated
sample.

Construction
requirement = sdo.requirements.FunctionMatching creates an
sdo.requirements.FunctionMatching requirement object and assigns default values to its
properties. Use dot notation to customize the properties. Use the evalRequirement command to
evaluate whether test data satisfies the specified requirement.

requirement = sdo.requirements.FunctionMatching(Name,Value) creates the
requirement object with additional options specified by one or more Name,Value pair arguments.
Name is a property name on page 2-48 and Value is the corresponding value. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

 sdo.requirements.FunctionMatching class

2-47

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-48 of the requirement object during
object creation. For example, requirement =
sdo.requirements.FunctionMatching('Type','quadratic') creates an
sdo.requirements.FunctionMatching object and specifies the function to be matched as
quadratic.

Properties
Centers — Values to subtract from independent variable vectors
[0 0] (default) | vector

Values to subtract from the independent variable vectors that you input to the evalRequirement
method, specified as a vector of length equal to number of independent variables. The number of
independent variables equals the dimensionality of the test data. For example, suppose that you
specify Centers as [1 2] for a two-dimensional variable with two independent variables. The
software subtracts 1 from the first independent variable vector and 2 from the second independent
variable vector.

Specify Centers to improve numerical conditioning when one or more independent variable vectors
have a mean that differs from 0 by several orders of magnitude. If you do not specify independent
variable vectors, then the software does not use Centers.

The default value of Centers, [0 0], is for a two-dimensional variable. For variables of other
dimensions, change the Scales and Centers properties together using the set command. For an
example, see “Evaluate Function Matching Requirement for One-Dimensional Variable” on page 2-
50.
Data Types: double

Description — Requirement description
'' (default) | character vector

Requirement description, specified as a character vector.
Example: 'Requirement 1 for myModel.'
Data Types: char

Method — Method for processing errors
'SSE' (default) | 'SAE' | 'Residuals'

Method for processing errors during evaluation of requirement by evalRequirement command. The
command computes an error signal that is the difference between test data and the function of the
independent variables specified in the Type property. Method specifies how the errors are further
processed. Method is specified as one of the following values:

• 'SSE' — Sum of squares of the errors
• 'SAE' — Sum of absolute values of errors
• 'Residuals' — Errors

Data Types: char

2 Classes

2-48

Name — Name of requirement
'' (default) | character vector

Name of requirement, specified as a character vector.
Example: 'Requirement1'
Data Types: char

Scales — Scaling of independent variable vectors
[1 1] (default) | vector of positive numbers

Scaling of the independent variable vectors that you input to the evalRequirement method,
specified as a vector of length equal to number of independent variable. The number of independent
variables equals the dimensionality of the test data. The independent variable vectors are divided by
the corresponding Scales value after subtracting the Centers values.

For example, suppose that you specify Centers as [5 50] and Scales as [10 100] for a two-
dimensional variable with two independent variables. The software subtracts 5 from the first
independent variable vector and divides the result by 10. The software subtracts 50 from the second
independent variable vector and divides the result by 100.

Specify Scales to improve numerical conditioning when independent variable vectors differ from
each other by several orders of magnitude. If you do not specify independent variable vectors, then
the software does not use Scales.

The default value of Scales, [1 1], is for a two-dimensional variable. For variables of other
dimensions, change the Scales and Centers properties together using the set command. For an
example, see “Evaluate Function Matching Requirement for One-Dimensional Variable” on page 2-
50.
Data Types: double

Type — Function to be matched
'linear' (default) | 'purequadratic' | 'quadratic'

Function to be matched, specified as one of the following:

• 'linear' — Test data from dependent variable V are fit to a linear function. For example, for a
two-dimensional variable with independent variables, X1 and X2, the linear function has the form:

V = a0 + a1X1 + a2X2

When you use evalRequirement to evaluate the requirement for test data, the software
calculates the fit coefficients a0, a1, and a2 and then calculates the error between the test data
and the linear function.

• 'purequadratic' — Test data are fit to a quadratic function with no cross-terms. For a two-
dimensional variable, the pure quadratic function has the form:

V = a0 + a1X1 + a2X1
2 + a3X2 + a4X2

2

• 'quadratic' — Test data are fit to a quadratic function that includes cross-terms. For a two-
dimensional variable, the quadratic function has the form:

V = a0 + a1X1 + a2X1
2 + a3X2 + a4X2

2 + a5X1X2

 sdo.requirements.FunctionMatching class

2-49

If the test data are one-dimensional, there are no cross-terms and so the computation is the same
as when Type is 'purequadratic'.

Data Types: char

Methods

evalRequirement Evaluate satisfaction of function matching requirement

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create a Requirement Object to Match a Quadratic Function

Create a requirement object to impose a function matching requirement on the values of a variable.

Requirement = sdo.requirements.FunctionMatching;

The object is created with default properties and specifies that test data from the variable must
match a linear function.

Specify that test data must match a quadratic function with no cross-terms.

Requirement.Type = 'purequadratic';

You can now use the evalRequirement command to evaluate whether test data satisfies the
requirement.

Specify Scaling and Centering Values for Independent Variables

Create a function matching requirement object for a two-dimensional variable, and specify scaling
and centering values for the independent variables.

The Centers and Scales properties are specified as vectors of length equal to number of
independent variables. The number of independent variables equals the dimensionality of the test
data.

Requirement = sdo.requirements.FunctionMatching('Centers',[5 10],...
 'Scales',[50 100]);

When you specify independent variables as inputs to the evalRequirement command, the software
subtracts 5 from the first independent variable and then divides the result by 10. The software
subtracts 50 from the second independent variable and then divides the result by 100.

2 Classes

2-50

Evaluate Function Matching Requirement for One-Dimensional Variable

Create a requirement object to match one-dimensional variable data to a linear function.

Requirement = sdo.requirements.FunctionMatching;

Specify the Centers and Scales properties for a one-dimensional variable by using the set
command. You specify these properties because their default values are for a two-dimensional
variable.

set(Requirement,'Centers',0,'Scales',1);

Specify test data for the one-dimensional variable.

dependentVariable = 0.5+5.*(1:5);

Evaluate the requirement.

evaluation = evalRequirement(Requirement,dependentVariable)

evaluation = 5.6798e-30

The software computes the linear function using the default independent variable vector [0 1 2 3
4] because you did not specify any independent variable vectors. There is one independent variable
because the number of independent variables must equal the number of dimensions of the test data.
The size of the independent variable vector equals the size of the test data.

In this example, the processing method has the default value of 'SSE', so evaluation is returned
as a scalar value equal to the sum of squares of the errors. evaluation is very close to zero,
indicating that the dependentVariable test data almost matches a linear function. Note that
machine precision can affect the value of evaluation at such small values.

Version History
Introduced in R2016b

See Also
copy | get | set | evalRequirement

Topics
“Write a Cost Function”

 sdo.requirements.FunctionMatching class

2-51

sdo.requirements.GainPhaseMargin class
Package: sdo.requirements

Gain and phase margin bounds

Description
Specify lower or equality bounds on the gain and phase margin of a linear system. You can then
optimize the model response to meet the bounds using sdo.optimize.

You must have Simulink Control Design software to specify gain and phase margin requirements.

Construction
gainphase_req = sdo.requirements.GainPhaseMargin creates a
sdo.requirements.GainPhaseMargin object and assigns default values to its properties.

gainphase_req = sdo.requirements.GainPhaseMargin(Name,Value) uses additional
options specified by one or more Name,Value pair arguments. Name is a property name and Value is
the corresponding value. Name must appear inside single quotes (''). You can specify several name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-52 of the requirement object during
object creation. For example, requirement =
sdo.requirements.GainPhaseMargin('Type','>=') creates an
sdo.requirements.GainPhaseMargin object and specifies the Type property as a lower bound.

Properties
Description

Requirement description, specified as a character vector. For example, 'Requirement on signal
1'.

Default: ''

FeedbackSign

Feedback loop sign to determine the gain and phase margins of the linear system.

Must be –1 or 1. Use –1 if the loop has negative feedback and 1 if the loop has positive feedback.

2 Classes

2-52

Default: –1

GainMargin

Gain margin bound. Use MagnitudeUnits to specify the gain units. Set to [] to specify a bound on
the phase margin only.

Default: 10

MagnitudeUnits

Magnitude units of the requirement. Must be:

• 'db' (decibels)
• 'abs' (absolute units)

Default: 'db'

Name

Requirement name, specified as a character vector.

Default: ''

PhaseMargin

Phase margin bound. Must be in degrees and a positive finite scalar. Set to [] to specify a bound on
the gain margin only.

Default: 60

PhaseUnits

Phase units of the requirement specified as one of the following values:

• 'deg' (degrees)
• 'rad' (radians)

Default: 'deg'

Type

Gain and phase margin requirement type, specified as one of the following values:

• '>=' — Lower bound
• '==' — Equality bound
• 'max' — Maximization objective

Default: '>='

Methods

evalRequirement Evaluate gain and phase margin bounds for linear system

 sdo.requirements.GainPhaseMargin class

2-53

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Construct a gain and phase margin object and specify gain and phase margin requirement.

r = sdo.requirements.GainPhaseMargin;
r.GainMargin = 5;
r.PhaseMargin = 55;

Alternatively, you can specify the gain and phase margins during construction.

 r = sdo.requirements.GainPhaseMargin(...
 'GainMargin',5, ...
 'PhaseMargin', 55);

Alternatives
Use getbounds to get the bounds specified in a Check Gain and Phase Margins and Check Nichols
Characteristics block.

See Also
copy | get | set

Topics
Class Attributes
Property Attributes

2 Classes

2-54

sdo.requirements.MonotonicVariable class
Package: sdo.requirements

Impose monotonic constraint on variable

Description
Use the sdo.requirements.MonotonicVariable object to impose a monotonic constraint on a
variable in your Simulink model. The variable can be a vector, matrix, or multidimensional array that
is a parameter in your model, such as the breakpoints of a lookup table. You create the requirement
object, and specify the type of monotonic requirement the variable needs to satisfy. For example, for a
2-D array variable, you can specify the elements of the first dimension as monotonically increasing
and the elements of the second dimension as monotonically decreasing.

You can use the requirement object as an input to your cost function and use the evalRequirement
command to evaluate whether your test data satisfies the specified requirement. You can then use the
cost function and sdo.optimize to perform response optimization, subject to satisfaction of the
specified requirement. If you are performing sensitivity analysis, after you generate parameter
samples, you can use the cost function and sdo.evaluate to evaluate the requirement for each
generated sample.

Construction
requirement = sdo.requirements.MonotonicVariable creates an
sdo.requirements.MonotonicVariable requirement object and assigns default values to its
properties. Use dot notation to customize the properties. Use the evalRequirement command to
evaluate whether test data satisfies the specified requirement.

requirement = sdo.requirements.MonotonicVariable(Name,Value) creates the
requirement object with additional options specified by one or more Name,Value pair arguments.
Name is a property name on page 2-56 and Value is the corresponding value. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-56 of the requirement object during
object creation. For example, requirement =
sdo.requirements.MonotonicVariable('Type',{'>'}) creates an
sdo.requirements.MonotonicVariable object and specifies the Type property as monotonically
decreasing.

 sdo.requirements.MonotonicVariable class

2-55

Properties
Description — Requirement description
'' (default) | character vector

Requirement description, specified as a character vector.
Example: 'Requirement 1 for myModel.'
Data Types: char

Name — Name of requirement
'' (default) | character vector

Name of requirement, specified as a character vector.
Example: 'Requirement1'
Data Types: char

Type — Monotonicity type
{'<'} (default) | cell array of character vectors

Monotonicity type for each dimension of the variable, specified as a cell array of character vectors.
The size of the cell array equals the dimensions of the variable. Specify the required monotonic
relation between the elements in each dimension as one of the following:

• '<' — Each element of the variable is less than the next element in that dimension. That is, the
elements are monotonically increasing.

• '<=' — Each element of the variable is less than or equal to the next element in that dimension.
• '>' — Each element of the variable is greater than the next element in that dimension. That is,

the elements are monotonically decreasing.
• '>=' — Each element of the variable is greater than or equal to the next element in that

dimension.
• 'unconstrained' — No constraint exists between the elements of the variable in that

dimension. When the requirement is evaluated for test data using evalRequirement, the output
corresponding to that dimension is —Inf, indicating the requirement is satisfied.

For example, for a two-dimensional variable, if you require the elements in the first dimension of the
variable to be monotonically increasing while having no restriction on the elements of the second
dimension, specify Type as {'<','unconstrained'}.
Data Types: cell

Methods

evalRequirement Evaluate satisfaction of monotonic variable requirement

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

2 Classes

2-56

Examples

Create Monotonic Variable Requirement Object

Create a requirement object with default properties.

Requirement = sdo.requirements.MonotonicVariable;

Specify the requirement type for a 1-dimensional variable as monotonically decreasing.

Requirement.Type = {'>'};

You can now use the evalRequirement command to evaluate if test data satisfies the requirement.

Specify Monotonicity for Multidimensional Variable

Create a requirement object, and specify the monotonicity for a 3-dimensional variable.

Requirement = sdo.requirements.MonotonicVariable('Type',{'<','>','>='});

The object requires the elements in the first dimension of the variable to be monotonically increasing
and the elements in the second dimension to be monotonically decreasing. Each element in the third
dimension of the variable can be greater than or equal to the next element in that dimension.

Version History
Introduced in R2016b

See Also
copy | get | set | evalRequirement

Topics
“Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)”
“Write a Cost Function”

 sdo.requirements.MonotonicVariable class

2-57

sdo.requirements.PhasePlaneEllipse class
Package: sdo.requirements

Impose elliptic bound on phase plane trajectory of two signals

Description
Use the sdo.requirements.PhasePlaneEllipse object to impose an elliptic bound on the phase
plane trajectory of two signals in a Simulink model. The phase plane trajectory is a plot of the two
signals against each other. You specify the radii, center, and rotation of the bounding ellipse. You also
specify whether you require the trajectory of the two signals to lie inside or outside the ellipse.

The following image shows the bounding ellipse and an example of the phase plane trajectory of two
signals.

The X-Y plane is the phase plane defined by the two signals. rx and ry are the radii of the bounding
ellipse along the x and y axes, and θR is the rotation of the ellipse about the center. The ellipse center
is at (x0,y0). In the image, the phase plane trajectory of the signals lies within the bounding ellipse for
all time-points t1 to tn.

You can use the object as an input to your cost function, and use the evalRequirement command in
the cost function to evaluate whether your test signals satisfy the specified requirement. You can then
use the cost function and sdo.optimize to perform parameter estimation or response optimization,
subject to the satisfaction of the specified requirement. If you are performing sensitivity analysis,
after you generate parameter samples, you can use the cost function and sdo.evaluate to evaluate
the requirement for each generated sample.

Construction
requirement = sdo.requirements.PhasePlaneEllipse creates an
sdo.requirements.PhasePlaneEllipse requirement object and assigns default values to its
properties. Use dot notation to customize the properties.

2 Classes

2-58

Use the evalRequirement command to evaluate whether test signals satisfy the specified
requirement.

requirement = sdo.requirements.PhasePlaneEllipse(Name,Value) creates the
requirement object with additional options specified by one or more Name,Value pair arguments.
Name is a property name on page 2-59 and Value is the corresponding value. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-59 of the requirement object during
object creation. For example, requirement =
sdo.requirements.PhasePlaneEllipse('Type','>=') creates an
sdo.requirements.PhasePlaneEllipse object and specifies the Type property as an outer
bound.

Properties
Center — Location of center of ellipse
[0 0] (default) | 1-by-2 array

Location of center of bounding ellipse, specified as a 1-by-2 array with real finite values. The
elements of the array specify x0 and y0, the x and y coordinates of the center location. To completely
characterize the ellipse, also specify the Radius and Rotation properties of the ellipse. To see the
equation of the ellipse, see “Description” on page 2-58.
Example: [1.5,-1]
Data Types: double

Description — Requirement description
'' (default) | character vector

Requirement description, specified as a character vector.
Example: 'Requirement 1 for myModel.'
Data Types: char

Method — Method for requirement evaluation
'Maximum' (default) | 'Residuals'

Method for requirement evaluation using the evalRequirement command, specified as one of the
following:

• 'Maximum' — The evalRequirement command computes the signed minimum distance of each
point in the phase plane trajectory to the bounding ellipse and returns a scalar that is the
maximum of these distances.

 sdo.requirements.PhasePlaneEllipse class

2-59

• 'Residuals' — The evalRequirement command returns a column vector with the signed
minimum distance of each point in the phase plane trajectory to the bounding ellipse. Use this
method instead of 'Maximum' to see the distance of all of the trajectory points to the phase plane
ellipse.

Data Types: char

Name — Name of requirement
'' (default) | character vector

Name of requirement, specified as a character vector.
Example: 'Requirement1'
Data Types: char

Radius — Radii of ellipse
[1 0.5] (default) | 1-by-2 array

Radii of ellipse, specified as a 1-by-2 array with real positive finite values. The elements of the array
specify rx and ry, the x-axis and y-axis radii, before any rotation about the ellipse center. To completely
characterize the ellipse, also specify the Center and Rotation properties of the ellipse. To see the
equation of the ellipse, see “Description” on page 2-58.
Data Types: double

Rotation — Angle of rotation of ellipse about center
0 (default) | real finite scalar

Angle of rotation θR of ellipse about center in radians, specified as a real finite scalar. The angle of
rotation is specified from the x-axis. To completely characterize the ellipse, also specify the Center
and Radius properties of the ellipse. To see the equation of the ellipse, see “Description” on page 2-
58.
Example: 'Requirement 1 for myModel.'
Data Types: double

Type — Type of bound
'<=' (default) | '>='

Type of bound, specified as one of the following:

• '<=' — Ellipse is an upper bound. The phase plane trajectory of the two signals should lie inside
or on the ellipse.

• '>=' — Ellipse is a lower bound. The phase plane trajectory of the two signals should lie outside
or on the ellipse.

Methods
evalRequirement Evaluate satisfaction of elliptical bound on phase plane trajectory of two signals

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

2 Classes

2-60

Examples

Create Phase Plane Ellipse Requirement and Specify Ellipse Center

Create a requirement object with default properties.

Requirement = sdo.requirements.PhasePlaneEllipse;

The requirement object specifies the bounding ellipse as an upper bound with center located at [0,0],
and no rotation. The x-axis radius of the ellipse is 1 and the y-axis radius is 0.5.

Specify the location of the center of the ellipse.

Requirement.Center = [1,0]

Requirement =
 PhasePlaneEllipse with properties:

 Radius: [1 0.5000]
 Center: [1 0]
 Rotation: 0
 Type: '<='
 Method: 'Maximum'
 Name: ''
 Description: ''

You can now use the evalRequirement command to evaluate whether test signals satisfy the
requirement.

Specify Bounding Ellipse as Lower Bound

Create a requirement object, and specify the bounding ellipse as a lower bound. Use default values
for the location of the center, radii, and rotation of the bounding ellipse.

Requirement = sdo.requirements.PhasePlaneEllipse('Type','>=');

The requirement object specifies that the phase plane trajectory of test signals should lie outside the
ellipse.

Version History
Introduced in R2016b

See Also
copy | get | set | evalRequirement

Topics
“Design Optimization Using Lookup Table Requirements for Gain Scheduling (Code)”
“Write a Cost Function”

 sdo.requirements.PhasePlaneEllipse class

2-61

sdo.requirements.PhasePlaneRegion class
Package: sdo.requirements

Impose region bound on phase plane trajectory of two signals

Description
Use the sdo.requirements.PhasePlaneRegion object to impose a region bound on the phase
plane trajectory of two signals in a Simulink model. The phase plane trajectory is a plot of the two
signals against each other. In the object, you can specify the bounded region as a single edge, or
multiple piecewise-linear edges. You specify the starting and ending x and y coordinates of the bound
edges, where the X-Y plane is the phase plane defined by the two signals. You also specify whether
you require the trajectory of the two signals to lie inside or outside the bounded region specified by
the edges.

You can use the object as an input to your cost function, and use the evalRequirement command in
the cost function to evaluate whether your test signals satisfy the specified requirement. You can then
use the cost function and sdo.optimize to perform parameter estimation or response optimization,
subject to the satisfaction of the specified requirement. If you are performing sensitivity analysis,
after you generate parameter samples, you can use the cost function and sdo.evaluate to evaluate
the requirement for each generated sample.

Construction
requirement = sdo.requirements.PhasePlaneRegion creates an
sdo.requirements.PhasePlaneRegion requirement object and assigns default values to its
properties. Use dot notation to customize the properties of the object, except bound edges. To specify
the bound edges simultaneously, use the set command. Use the evalRequirement command to
evaluate whether test signals satisfy the specified requirement.

requirement = sdo.requirements.PhasePlaneRegion(Name,Value) creates the
requirement object with additional options specified by one or more Name,Value pair arguments.
Name is a property name on page 2-63 and Value is the corresponding value. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-63 of the requirement object during
object creation. For example, requirement =
sdo.requirements.PhasePlaneRegion('OpenEnd',[1 1]) creates an
sdo.requirements.PhasePlaneRegion object and specifies that the first and last edge of the
bound extend to infinity.

2 Classes

2-62

Properties
BoundX — X-coordinates of bound edges
[-1 -1] (default) | n-by-2 array

X-coordinates of edges that define the bounded region, specified as an n-by-2 array with finite values,
where n is the number of edges in the bound. Each row of BoundX specifies the starting and ending x-
coordinate values of an edge. The number of rows must match the number of rows in the BoundY
property, which specifies the y-coordinates of the edges.

You must specify the BoundX and BoundY properties simultaneously, either using
Name,Value arguments during object construction, or using the set command after object
construction.
Data Types: double

BoundY — Y-coordinates of bound edges
[0 1] (default) | n-by-2 array

Y-coordinates of edges that define the bounded region, specified as an n-by-2 array with finite values,
where n is the number of edges in the bound. Each row of BoundY specifies the starting and ending
y-coordinate values of an edge. The number of rows must match the number of rows in the BoundX
property, which specifies the x-coordinates of the edges.

You must specify the BoundX and BoundY properties simultaneously, either using
Name,Value arguments during object construction, or using the set command after object
construction.
Data Types: double

Description — Requirement description
'' (default) | character vector

Requirement description, specified as a character vector.
Example: 'Requirement 1 for myModel.'
Data Types: char

OpenEnd — Extension of first and last bound edges to infinity
[false false] (default) | 1-by-2 logical array

Extension of first and last bound edges to infinity, specified as a 1-by-2 logical array.

If the first element of OpenEnd is true, the beginning of the first edge in the piecewise-linear bound
extends to infinity. If the second element of OpenEnd is true, the end of the last edge in the
piecewise-linear bound extends to infinity.

For an example, see “Create a Phase Plane Region Bound With Edge Extending to Infinity” on page 2-
65.
Data Types: logical

Name — Name of requirement
'' (default) | character vector

Name of requirement, specified as a character vector.

 sdo.requirements.PhasePlaneRegion class

2-63

Example: 'Requirement1'
Data Types: char

Type — Type of bound
'<=' (default) | '>='

Type of bound, specified as one of the following:

• '<=' — The out-of-bound region is always to the left of each edge, where the forward direction is
the direction of creation of the edge.

For example, consider a single-edge bound between the point A located at (-1,1) and point B at
(3,1). Suppose you specify the coordinates of point A before you specify point B. That is, you
specify BoundX as [-1 3] and BoundY as [1 1]. The black arrow in the left plot shows the
direction of creation of the edge, and the yellow region is the out-of-bound region when Type is
'<='. Now suppose you instead specify point B before point A. That is, you specify BoundX is [3
-1] and BoundY is [1 1]. The right plot shows that the out-of-bound region is now below the
edge because the direction of creation of the edge has reversed.

• '>=' — The out-of-bound region is always to the right of each edge.

For the single-edge example, suppose that you specify the coordinates of point A before you
specify point B. In the left plot you can see that the yellow out-of-bound region is below the edge
when Type is '>='. This is because the yellow region is to the right of the edge, in the direction of
creation of the edge. If you instead specify point B before point A, the right plot shows that the
out-of-bound region is now above the edge.

2 Classes

2-64

For an example with multiple bound edges, see “Specify Bounding Region With Multiple Edges and
Evaluate the Requirement” on page 2-66.
Data Types: char

Methods
evalRequirement Evaluate satisfaction of piecewise-linear bound on phase plane trajectory of two

signals

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Create a Phase Plane Region Bound With Edge Extending to Infinity

Create a phase plane region requirement object with default properties. The object specifies a
piecewise-linear bound on the phase plane trajectory of two signals. The phase plane is the X-Y plane
defined by the two signals.

Requirement = sdo.requirements.PhasePlaneRegion;

Specify a piecewise-linear bound with two edges. The (x,y) coordinates for the beginning and end of
the first edge are (1,1) and (2,1). The second edge extends from (2,1) to (2,0). You must specify the
BoundX and BoundY properties simultaneously.

set(Requirement,'BoundX',[1 2; 2 2],'BoundY',[1 1; 1 0])

Specify that the beginning of the first edge extends to infinity.

Requirement.OpenEnd = [1 0];

The first edge now extends from (-Inf,1) to (2,1).

 sdo.requirements.PhasePlaneRegion class

2-65

You can now use the evalRequirement command to evaluate whether test data from two signals
satisfy the requirement.

Specify Bounding Region With Multiple Edges and Evaluate the Requirement

Create a requirement object to specify a piecewise-linear bound on the phase plane trajectory of two
signals. The bound has two edges. The first edge extends from (-4,1) to (2,1). The second edge
extends from (2,1) to (2,-4).

Requirement = sdo.requirements.PhasePlaneRegion('BoundX',[-4 2; 2 2],...
 'BoundY',[1 1; 1 -4]);

Specify the bound type as '>='.

Requirement.Type = '>=';

The plot below shows the bounding edges in black. The arrows indicate the direction in which the
edges were specified. When you specify the Type property as '>=', the out-of-bound area is always
to the right of each edge, where the forward direction is the direction of creation of the edge. As a
result, the out-of bound region is the yellow shaded area, and a trajectory point located at (3,3) is in
the bounded region.

Evaluate the requirement for the phase plane trajectory point located at (3,3).

Evaluation = evalRequirement(Requirement,[3 3])

Evaluation = -0.6389

2 Classes

2-66

evalRequirement returns a negative number, indicating the requirement is satisfied.

Now create the requirement by changing the order of specification of the edges.

set(Requirement,'BoundX',[2 2; 2 -4],'BoundY',[-4 1;1 1]);

The plot shows that the edges were created in the opposite order. So, even though the requirement
type is still '>=', the out-of-bound region, which is always to the right of the edges, is now flipped.

Evaluate the requirement.

Evaluation = evalRequirement(Requirement,[3 3])

Evaluation = 0.1087

A positive Evaluation value indicates the requirement has been violated. Thus, for the same
requirement type, the trajectory point at (3,3) is out of bounds when the edges are defined in the
reverse order.

Version History
Introduced in R2016b

See Also
copy | get | set | evalRequirement

 sdo.requirements.PhasePlaneRegion class

2-67

Topics
“Write a Cost Function”

2 Classes

2-68

sdo.requirements.OpenLoopGainPhase class
Package: sdo.requirements

Nichols response bound

Description
Specify piecewise-linear bounds on the Nichols (gain-phase) response of a linear system. You can then
optimize the model response to meet these bounds using sdo.optimize.

You can specify an upper or lower bound, include multiple linear edges, and extend the bounds to +
or –inf.

You must have Simulink Control Design software to specify open-loop gain and phase requirements.

Construction
olgainphase_req = sdo.requirements.OpenLoopGainPhase creates a
sdo.requirements.OpenLoopGainPhase object and assigns default values to its properties.

gainphase_req = sdo.requirements.OpenLoopGainPhase(Name,Value) uses additional
options specified by one or more Name,Value pair arguments. Name is a property name and Value is
the corresponding value. Name must appear inside single quotes (''). You can specify several name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-69 of the requirement object during
object creation. For example, requirement =
sdo.requirements.OpenLoopGainPhase('Type','>=') creates an
sdo.requirements.OpenLoopGainPhase object and specifies the Type property as a lower
bound.

Properties
BoundGains

Gain values for a piecewise linear bound.

Specify the start and end values in decibels for all the edges in the piecewise-linear bound. The
property must be a nx2 array of finite doubles, where each row specifies the start and end gain
values of an edge. The number of rows must match the number of rows of the BoundPhases
property.

 sdo.requirements.OpenLoopGainPhase class

2-69

Use set to set this and the BoundPhases properties simultaneously.

Default: [-10 -10]

BoundPhases

Phase values for a piecewise-linear bound.

Specify the start and end values in degrees for all the edges in the piecewise-linear bound. The
property must be a nx2 array of finite doubles, where each row specifies the start and end phase
values of an edge. The number of rows must match the number of rows of the BoundGains property.

Use set to set this and the BoundGains properties simultaneously.

Default: [-180 -90]

Description

Requirement description, specified as a character vector. For example, 'Requirement on signal
1'.

Default: ''

MagnitudeUnits

Magnitude units of the requirement. Must be:

• 'db' (decibels)
• 'abs' (absolute units)

Default: 'db'

Name

Requirement name, specified as a character vector.

Default: ''

OpenEnd

Extend bound in a negative or positive time direction.

Use to bound signals that extend beyond the coordinates specified by the BoundPhases and
BoundGains properties.

Must be a 1x2 logical array. If true, the first or last edge of the bound is extended to infinity.

Default: [0 0]

PhaseUnits

Phase units of the requirement specified as one of the following values:

• 'deg' (degrees)
• 'rad' (radians)

2 Classes

2-70

Default: 'deg'

Type

Gain and phase requirement type, specified as one of the following values:

• '>=' — Lower bound
• '<=' — Upper bound

Default: '>='

Methods
evalRequirement Evaluate gain and phase bounds on Nichols response of linear system

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Construct an open-loop gain and phase object, and specify gain and phase requirements.

r = sdo.requirements.OpenLoopGainPhase;
set(r,'BoundPhases',[-120 -120; -120 -150; -150 -180],...
 'BoundGains',[20 0; 0 -20; -20 -20]);

Alternatively, you can specify the gain and phase requirements during construction:

r = sdo.requirements.OpenLoopGainPhase('BoundPhases',...
 [-120 -120; -120 -150; -150 -180],'BoundGains',...
 [20 0; 0 -20; -20 -20]);

Alternatives
Use getbounds to get the bounds specified in a Check Nichols Characteristics block.

See Also
copy | get | set

Topics
Class Attributes
Property Attributes

 sdo.requirements.OpenLoopGainPhase class

2-71

sdo.requirements.PZDampingRatio class
Package: sdo.requirements

Damping ratio bound

Description
Specify bounds on the damping ratio of the poles of a linear system. You can then optimize the model
response to meet these bounds using sdo.optimize. You can also use this object to specify
overshoot bound.

You must have Simulink Control Design software to specify damping ratio requirements.

Construction
damp_req = sdo.requirements.PZDampingRatio creates a
sdo.requirements.PZDampingRatio object and assigns default values to its properties.

gainphase_req = sdo.requirements.PZDampingRatio(Name,Value) uses additional options
specified by one or more Name,Value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-72 of the requirement object during
object creation. For example, requirement =
sdo.requirements.PZDampingRatio('Type','>=') creates an
sdo.requirements.PZDampingRatio object and specifies the Type property as a lower bound.

Properties
DampingRatio

Damping ratio bound. Must be a finite scalar between 0 and 1.

Default: 0.7071

Description

Requirement description, specified as a character vector. For example, 'Requirement on signal
1'.

2 Classes

2-72

Default: ''

Name

Requirement name, specified as a character vector.

Default: ''

Type

Damping ratio bound type, specified as one of the following values:

• '<=' — Upper bound
• '>=' — Lower bound
• '==' — Equality bound
• 'max' — Maximization objective

Default: '>='

Methods
evalRequirement Evaluate damping ratio bound on linear system
getOvershoot Convert damping ratio to equivalent overshoot value
setOvershoot Set overshoot to an equivalent damping ratio

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Construct a damping ratio object and specify the damping ratio.

 r = sdo.requirements.PZDampingRatio;
 r.DampingRatio = 0.1;

Alternatively, you can specify the damping ratio during construction.

 r = sdo.requirements.PZDampingRatio('DampingRatio',0.1);

Alternatives
Use getbounds to get the bounds specified in a Check Pole-Zero Characteristics block.

See Also
copy | get | set

Topics
Class Attributes
Property Attributes

 sdo.requirements.PZDampingRatio class

2-73

sdo.requirements.PZNaturalFrequency class
Package: sdo.requirements

Natural frequency bound

Description
Specify bounds on the natural frequency of the poles of a linear system. You can then optimize the
model response to meet these bounds using sdo.optimize.

You must have Simulink Control Design software to specify natural frequency requirements.

Construction
pznatfreq_req = sdo.requirements.PZNaturalFrequency creates a
sdo.requirements.PZNaturalFrequency object and assigns default values to its properties.

pznatfreq_req = sdo.requirements.pznatfreq_req(Name,Value) uses additional options
specified by one or more Name,Value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-74 of the requirement object during
object creation. For example, requirement =
sdo.requirements.PZNaturalFrequency('Type','>=') creates an
sdo.requirements.PZNaturalFrequency object and specifies the Type property as a lower
bound.

Properties
Description

Requirement description, specified as a character vector. For example, 'Requirement on signal
1'.

Default: ''

FrequencyUnits

Frequency units of the requirement, specified as one of the following values:

2 Classes

2-74

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

Default: 'rad/s'

Name

Requirement name, specified as a character vector.

Default: ''

NaturalFrequency

Natural frequency bound. Must be in radians/second and a positive finite scalar.

Default: 2

Type

Natural frequency bound type, specified as one of the following values:

• '<=' — Upper bound
• '>=' — Lower bound
• '==' — Equality bound

 sdo.requirements.PZNaturalFrequency class

2-75

• 'max' — Maximization objective

Default: '>='

Methods
evalRequirement Evaluate natural frequency bound on linear system

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Construct a natural frequency object and specify the natural frequency.

r = sdo.requirements.PZNaturalFrequency;
r.NaturalFrequency = 1;

Alternatively, you can specify the natural frequency during construction.

r = sdo.requirements.PZNaturalFrequency(...
 'NaturalFrequency',1);

Alternatives
Use getbounds to get the bounds specified in a Check Pole-Zero Characteristics block.

See Also
copy | get | set

Topics
Class Attributes
Property Attributes

2 Classes

2-76

sdo.requirements.PZSettlingTime class
Package: sdo.requirements

Settling time bound

Description
Specify bounds on the real component of the poles of a linear system. The real component of poles
are used to approximate the settling time. You can then optimize the model response to meet these
bounds using sdo.optimize.

You must have Simulink Control Design software to specify settling time requirements.

Construction
settime_req = sdo.requirements.PZSettlingTime creates a
sdo.requirements.PZSettlingTime object and assigns default values to its properties.

settime_req = sdo.requirements.PZSettlingTime(Name,Value) uses additional options
specified by one or more Name,Value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-77 of the requirement object during
object creation. For example, requirement =
sdo.requirements.PZSettlingTime('Type','>=') creates an
sdo.requirements.PZSettlingTime object and specifies the Type property as a lower bound.

Properties
Description

Requirement description, specified as a character vector. For example, 'Requirement on signal
1'.

Default: ''

Name

Requirement name, specified as a character vector.

 sdo.requirements.PZSettlingTime class

2-77

Default: ''

SettlingTime

Settling time bound. Must be in seconds and a positive finite scalar.

Default: 2

TimeUnits

Time units of the requirement, specified as one of the following values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

Default: 'second'

Type

Settling time bound type, specified as one of the following values:

• '<=' — Upper bound
• '>=' — Lower bound
• '==' — Equality bound
• 'min' — Minimization objective

Default: '<='

Methods

evalRequirement Evaluate settling time bound on linear system

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Construct a settling time object and specify the settling time requirement.

2 Classes

2-78

r = sdo.requirements.PZSettlingTime;
r.SettlingTime = 2.5;

Alternatively, you can specify the setting time during construction.

r = sdo.requirements.PZSettlingTime('SettlingTime',2.5);

Alternatives
Use getbounds to get the bounds specified in a Check Pole-Zero Characteristics block.

See Also
copy | get | set

Topics
Class Attributes
Property Attributes

 sdo.requirements.PZSettlingTime class

2-79

sdo.requirements.RelationalConstraint class
Package: sdo.requirements

Impose relational constraint on pair of variables

Description
Use the sdo.requirements.RelationalConstraint object to impose a relational constraint on a
pair of variables in a Simulink model. The variables can be any parameters in your model. You create
the requirement object, and specify the type of relation you want between the elements of the two
variables. For example, for two variables var1 and var2, you can specify that each element of var1
be greater than the corresponding element of var2.

You can use the requirement object as an input to your cost function and use the evalRequirement
command to evaluate if your test data satisfies the specified requirement. You can then use the cost
function and sdo.optimize to perform response optimization, subject to satisfaction of the specified
requirement. If you are performing sensitivity analysis, after you generate parameter samples, you
can use the cost function and sdo.evaluate to evaluate the requirement for each generated
sample.

Construction
requirement = sdo.requirements.RelationalConstraint creates an
sdo.requirements.RelationalConstraint requirement object and assigns default values to its
properties. Use dot notation to customize the properties. Use the evalRequirement command to
evaluate if test data satisfies the specified requirement.

requirement = sdo.requirements.RelationalConstraint(Name,Value) creates the
requirement object with additional options specified by one or more Name,Value pair arguments.
Name is a property name on page 2-81 and Value is the corresponding value. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-81 of the requirement object during
object creation. For example, requirement =
sdo.requirements.RelationalConstraint('Type','>') creates an
sdo.requirements.RelationalConstraint object and specifies that each data element in the
first variable is strictly greater than the corresponding element in the second variable.

2 Classes

2-80

Properties
Description — Requirement description
'' (default) | character vector

Requirement description, specified as a character vector.
Example: 'Requirement 1 for myModel.'
Data Types: char

Name — Name of requirement
'' (default) | character vector

Name of requirement, specified as a character vector.
Example: 'Requirement1'
Data Types: char

Type — Relation type
'<' (default) | '<=' | '>' | '>=' | '==' | '~='

Relation type between the elements of the two variables, specified as one of the following:

• '<' — Each data element in the first variable is less than the corresponding element in the second
variable.

• '<=' — Each data element in the first variable is less than or equal to the corresponding element
in the second variable.

• '>' — Each data element in the first variable is greater than the corresponding element in the
second variable.

• '>=' — Each data element in the first variable is greater than or equal to the corresponding
element in the second variable.

• '==' — Each data element in the first variable is equal to the corresponding element in the
second variable.

• '~=' — Each data element in the first variable is not equal to the corresponding element in the
second variable.

Data Types: char

Methods

evalRequirement Evaluate satisfaction of relational constraint requirement

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

 sdo.requirements.RelationalConstraint class

2-81

Constrain One Variable to be Greater Than Another

Create a requirement object with default properties to define the relation between two variables.

Requirement = sdo.requirements.RelationalConstraint;

Specify that the elements of the first variable be greater than the elements of the second variable.

Requirement.Type = '>';

You can now use the evalRequirement command to evaluate whether test data from two variables
satisfy the requirement.

Constrain Two Variables to be Equal to Each Other

Create a requirement object, and specify the relation between two variables in your model.

Requirement = sdo.requirements.RelationalConstraint('Type','==');

The elements of the first variable are required to be equal to the corresponding elements of the
second variable.

Version History
Introduced in R2016b

See Also
copy | get | set | evalRequirement

Topics
“Write a Cost Function”

2 Classes

2-82

sdo.requirements.SignalBound class
Package: sdo.requirements

Piecewise-linear amplitude bound

Description
Specify piecewise-linear upper or lower amplitude bounds on a time-domain signal. You can then
optimize the model response to meet these bounds using sdo.optimize.

You can include multiple linear edges, and extend to + or –inf.

Construction
sig_req = sdo.requirements.SignalBound creates an sdo.requirements.SignalBound
object and assigns default values to its properties.

sig_req = sdo.requirements.SignalBound(Name,Value) uses additional options specified by
one or more Name,Value pair arguments. Name is a property name and Value is the corresponding
value. Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-83 of the requirement object during
object creation. For example, requirement =
sdo.requirements.SignalBound('Type','>=') creates an
sdo.requirements.SignalBound object and specifies the Type property as a lower bound.

Properties
BoundMagnitudes

Magnitude values for the piecewise-linear bound.

Specify the start and end magnitude values for all edges in the bound. The property must be a nx2
array of finite doubles, where each row specifies the start and end magnitude values of an edge. The
number of rows must match the number of rows of the BoundTimes property.

Use set to set this and BoundTimes properties simultaneously.

Default: [1 1]

 sdo.requirements.SignalBound class

2-83

BoundTimes

Time values of the piecewise-linear bound.

Specify the start and end times for all the edges in the piecewise-linear bound. The property must be
a nx2 array of finite doubles where each row specifies the start and end times of an edge. The start
and end times must define a positive length. The number of rows must match the number of rows of
the BoundMagnitudes property.

Use set to set this and BoundMagnitudes properties simultaneously.

Default: [0 10]

Description

Requirement description, specified as a character vector. For example, 'Requirement on signal
1'.

Default: ''

Name

Requirement name, specified as a character vector.

Default: ''

OpenEnd

Extend bound in a negative or positive time direction.

Specify whether the first and last edge of the bound extends to –inf and +inf respectively. Use to
bound signals that extend beyond the time values specified by the BoundTimes property.

Must be a 1x2 logical array. If true, the first or last edge of the bound is extended in a negative or
positive direction, respectively.

Default: [0 0]

TimeUnits

Time units of the requirement, specified as one of the following values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

2 Classes

2-84

Default: 'second'

Type

Bound type

Specify whether the piecewise-linear requirement is an upper or lower bound, specified as one of the
following values:

• '<=' — Upper bound
• '>=' — Lower bound

Default: '<='

Methods
evalRequirement Evaluate piecewise-linear bound

Examples
Construct a signal bound object and specify piecewise-linear bounds.

r = sdo.requirements.SignalBound;
set(r,'BoundTimes', [0 10; 10 20],...
 'BoundMagnitudes', [1.1 1.1; 1.01 1.01])

Alternatively, you can specify the bounds during construction:

r = sdo.requirements.SignalBound(...
 'BoundTimes',[0 10; 10 20],...
 'BoundMagnitudes',[1.1 1.1; 1.01 1.01]);

Alternatives
Use getbounds to get the bounds specified in a Check Custom Bounds block.

See Also
copy | get | set

Topics
Class Attributes
Property Attributes

 sdo.requirements.SignalBound class

2-85

sdo.requirements.SignalTracking class
Package: sdo.requirements

Reference signal to track

Description
Specify a tracking requirement on a time-domain signal. You can then optimize the model response to
track the reference using sdo.optimize.

You can specify an equality, upper or lower bound requirement.

Construction
track_req = sdo.requirements.SignalTracking creates an
sdo.requirements.SignalTracking object and assigns default values to its properties.

track_req = sdo.requirements.SignalTracking(Name,Value) uses additional options
specified by one or more Name,Value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-86 of the requirement object during
object creation. For example, requirement =
sdo.requirements.SignalTracking('Type','>=') creates an
sdo.requirements.SignalTracking object and specifies the Type property as a lower bound.

Properties
AbsTol

Absolute tolerance used to determine bounds as the signal approaches the reference signal. The
bounds on the reference signal are given by:

yu = (1 + RelTol)yr + AbsTol

yl = (1 –RelTol)yr – AbsTol

where yr is the value of the reference at a certain time, yu and yl are the upper and lower tolerance
bounds corresponding to that time point.

2 Classes

2-86

Default: 0

Description

Requirement description, specified as a character vector. For example, 'Requirement on signal
1'.

Default: ''

InterpolationTimes

Time points to use when comparing reference and testpoint signals, specified as one of the following
values:

• 'Reference only' — Compare the signals at the time points of the reference signal only
• 'Testpoint only' — Compare the signals at the time points of the testpoint signal only
• 'Reference and Testpoint' — Compare the signals at the time points of both the reference

and testpoint signals

Linear interpolation is used to compare the signals at the same timepoints.

Default: 'Reference only'

Method

Algorithm for evaluating the requirement when the Type property is '==', specified as one of the
following values:

• 'SSE'
• 'SAE'
• 'Residuals'

When the requirement is evaluated using evalRequirement, the software computes the error
between the reference and testpoint signals. This property specifies how the error signal e(t) = ys(t)–
yr(t) should be processed.

Default: 'SSE'

Name

Requirement name, specified as a character vector.

Default: ''

Normalize

Enable or disable normalization when evaluating the requirement. The maximum absolute value of
the reference signal is used for normalization. Must be 'on' or 'off'.

Default: 'on'

ReferenceSignal

Reference signal to track. Must be a MATLAB timeseries object with real finite data points.

 sdo.requirements.SignalTracking class

2-87

Default: [1x1 timeseries]

RelTol

Relative tolerance used to determine bounds as the signal approaches the reference signal. The
bounds on the reference signal are given by:

yu = (1 + RelTol)yr + AbsTol

yl = (1 — RelTol)yr— AbsTol

Default: 0

RobustCost

Enable or disable robust treatment of outliers when evaluating the requirement. The software uses a
Huber loss function to handle the outliers in the cost function and improves the fit quality. This option
reduces the influence of outliers on the estimation without you manually modifying your data.

Must be one of the following:

• 'on' — When you call the evalRequirement method, the software uses a Huber loss function to
evaluate the cost for the tracking error outliers. The tracking error is calculated as e(t)=yref(t)-
ytest(t). The software uses the error statistics to identify the outliers.

The exact cost function used, F(x), depends on the requirement evaluation Method.

Method Name Cost Function for
Nonoutliers

Cost Function for Outliers

'SSE' F(x) = ∑
t ∈ NOL

e(t) × e(t)

NOL is the set of nonoutlier
samples.

F(x) = ∑
t ∈ OL

w × e(t)

w is a linear weight. OL is the
set of outlier samples.

'SAE'
F(x) = ∑

t ∈ NOL
e(t)

NOL is the set of nonoutlier
samples.

F(x) = ∑
t ∈ OL

w

w is a constant value. OL is
the set of outlier samples.

'Residuals' The software does not remove the outliers.

F(x) =
e(0)
⋮

e(N)

N is the number of samples.
• 'off'

Default: 'off'

Type

Tracking requirement type, specified as one of the following values:

2 Classes

2-88

• '==' — Tracking objective.

'<=' — Upper bound
• '>=' — Lower bound

Default: '=='

Weights

Weights to use when evaluating the tracking error between the reference and testpoint signals. Use
weights to increase or decrease the significance of different time points.

Must be real finite positive vector with the same number of elements as the Time property of the
MATLAB timeseries object in the ReferenceSignal property.

Methods

evalRequirement Evaluate tracking requirement

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Construct a signal tracking object and specify a reference signal.

r = sdo.requirements.SignalTracking;
r.ReferenceSignal = timeseries(1-exp(-(0:10)'));

Alternatively, you can specify the reference signal during construction.

r = sdo.requirements.SignalTracking(...
 'ReferenceSignal',timeseries(1-exp(-(0:10)')));

Alternatives
Use getbounds to get the bounds specified in a Check Against Reference block.

See Also
copy | get | set

Topics
Class Attributes
Property Attributes

 sdo.requirements.SignalTracking class

2-89

sdo.requirements.SingularValue class
Package: sdo.requirements

Singular value bound

Description
Specify frequency-dependent piecewise-linear upper and lower bounds on the singular values of a
linear system. You can then optimize the model response to meet these bounds using sdo.optimize
to .

You can specify upper or lower bounds, include multiple edges, and extend them to + or –infinity.

You must have Simulink Control Design software to specify singular value requirements.

Construction
singval_req = sdo.requirements.SingularValue creates a
sdo.requirements.SingularValue object and assigns default values to its properties.

singval_req = sdo.requirements.SingularValue(Name,Value) uses additional options
specified by one or more Name,Value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-90 of the requirement object during
object creation. For example, requirement =
sdo.requirements.SingularValue('Type','>=') creates an
sdo.requirements.SingularValue object and specifies the Type property as a lower bound.

Properties
BoundFrequencies

Frequency values for the gain bound.

Specify the start and end frequencies for all the edges in the piecewise-linear bound. The property
must be a nx2 array of finite doubles, where each row specifies the start and end frequencies of an
edge in the piecewise-linear bound. The start and end frequencies must define a positive length. The
number of rows must match the number of rows of the BoundMagnitudes property.

2 Classes

2-90

Use set to set this and the BoundMagnitudes properties simultaneously.

Use the FrequencyUnits property to specify the frequency units.

Default: [1 10]

BoundMagnitudes

Magnitude values for the gain bound.

Specify the start and end gain values for all the edges in the piecewise-linear bound. The property
must be a nx2 array of finite doubles where each row specifies the start and end gains of an edge in
the piecewise-linear bound. The number of rows must match the number of rows of the
BoundFrequencies property.

Use set to set this and the BoundFrequencies properties simultaneously.

Use the MagnitudeUnits property to specify the magnitude units.

Default: [0 0]

Description

Requirement description, specified as a character vector. For example, 'Requirement on signal
1'.

Default: ''

FrequencyScale

Frequency-axis scaling.

Use this property to determine the value of the bound between edge start and end points, specified as
one of the following values:

• 'linear'
• 'log'

For example, if bound edges are at frequencies f1 and f2, and the bound is to be evaluated at f3, the
edges are interpolated as a straight lines. The x-axis is either linear or logarithmic.

Default: 'log'

FrequencyUnits

Frequency units of the requirement, specified as one of the following values:

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'

 sdo.requirements.SingularValue class

2-91

• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

Default: 'rad/s'

MagnitudeUnits

Magnitude units of the requirement. Must be:

• 'db' (decibels)
• 'abs' (absolute units)

Default: 'db'

Name

Requirement name, specified as a character vector.

Default: ''

OpenEnd

Extend bound in a negative or positive frequency direction.

Specify whether the first and last edge of the bound extends to –inf and +inf respectively. Use to
bound signals that extend beyond the frequency values specified by the BoundFrequencies
property.

Must be a 1x2 logical array of true or false. If true, the first or last edge of the piecewise linear
bound is extended in the negative or positive direction.

Default: [0 0]

2 Classes

2-92

Type

Magnitude bound type. Must be:

• '<=' — Upper bound
• '>=' — Lower bound

Use to specify whether the piecewise-linear bound is an upper or lower bound. Use for upper bound
and for lower bound.

Methods
evalRequirement Evaluate singular value bound on linear system

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Construct a singular value object and specify bound frequencies and magnitudes.

r = sdo.requirements.SingularValue;
set(r,'BoundFrequencies',[1 10; 10 100],...
 'BoundMagnitudes',[1 1; 1 0]);

Alternatively, you can specify the frequency and magnitude during construction.

r = sdo.requirements.SingularValue(...
 'BoundFrequencies', [1 10; 10 100], ...
 'BoundMagnitudes', [1 1; 1 0]);

Alternatives
Use getbounds to get the bounds specified in a Check Singular Value Characteristics block.

See Also
copy | get | set

Topics
Class Attributes
Property Attributes

 sdo.requirements.SingularValue class

2-93

sdo.requirements.SmoothnessConstraint class
Package: sdo.requirements

Impose bounds on gradient magnitude of variable

Description
Use the sdo.requirements.SmoothnessConstraint object to impose an upper bound on the
gradient magnitude of a variable in a Simulink model. The variable can be a vector, matrix, or
multidimensional array that is a parameter in your model, such as the data of a lookup table. For
example, consider a car engine controller whose gain changes under different operating conditions
determined by the car speed. You can use a gradient bound constraint to limit the rate at which the
controller gain changes per unit change in vehicle speed.

You can use the requirement object as an input to your cost function and then use the
evalRequirement command to evaluate whether your test data satisfies the requirement. If the test
data is not smooth, the gradient of the test data is greater than the required bound. You can then use
the cost function and sdo.optimize to perform response optimization, subject to satisfaction of the
specified requirement. If you are performing sensitivity analysis, after you generate parameter
samples, you can use the cost function and sdo.evaluate to evaluate the requirement for each
generated sample.

Construction
requirement = sdo.requirements.SmoothnessConstraint creates an
sdo.requirements.SmoothnessConstraint requirement object and assigns default values to its
properties. Use dot notation to customize the properties. Use the evalRequirement command to
evaluate whether test data satisfies the specified requirement.

requirement = sdo.requirements.SmoothnessConstraint(Name,Value) creates the
requirement object with additional options specified by one or more Name,Value pair arguments.
Name is a property name on page 2-95 and Value is the corresponding value. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-95 of the requirement object during
object creation. For example, requirement =
sdo.requirements.SmoothnessConstraint('GradientBound',2.5) creates an
sdo.requirements.SmoothnessConstraint object and specifies the gradient magnitude bound
as 2.5.

2 Classes

2-94

Properties
Description — Requirement description
'' (default) | character vector

Requirement description, specified as a character vector.
Example: 'Requirement 1 for myModel.'
Data Types: char

GradientBound — Gradient magnitude bound
1 (default) | nonnegative finite real scalar

Gradient magnitude bound, specified as a nonnegative finite real scalar. When you use the
evalRequirement command to evaluate test data, the software checks whether the gradient
magnitude of the test data is less than or equal to the specified bound. If the gradient of the test data
is greater than the required bound, the test data is not smooth.
Data Types: double

Name — Name of requirement
'' (default) | character vector

Name of requirement, specified as a character vector.
Example: 'Requirement1'
Data Types: char

Type — Gradient magnitude bound type
'<=' (default)

Gradient magnitude bound type, specified as lower bound, '<='. When you use the
evalRequirement command, the software checks whether the gradient magnitude of the test data
is less than or equal to the specified in GradientBound property.
Data Types: char

Methods

evalRequirement Evaluate satisfaction of smoothness constraint requirement

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples

Specify a Bound on the Gradient Magnitude of a Variable

Create a requirement object to impose a bound on the gradient magnitude of a variable. The object
has default properties.

 sdo.requirements.SmoothnessConstraint class

2-95

Requirement = sdo.requirements.SmoothnessConstraint;

Specify the gradient magnitude bound value.

Requirement.GradientBound = 5;

Alternatively, specify the bound during object creation.

Requirement = sdo.requirements.SmoothnessConstraint('GradientBound',5);

You can now use the evalRequirement command to evaluate whether test data satisfies the
requirement.

Version History
Introduced in R2016b

See Also
copy | get | set | evalRequirement

Topics
“Write a Cost Function”

2 Classes

2-96

sdo.requirements.StepResponseEnvelope class
Package: sdo.requirements

Step response bound on signal

Description
Specify a step response envelope requirement on a time-domain signal. Step response characteristics
such as rise-time and percentage overshoot define the step response envelope.

Construction
step_req = sdo.requirements.StepResponseEnvelope creates an
sdo.requirements.StepResponseEnvelope object and assigns default values to its properties.

step_req = sdo.requirements.StepResponseEnvelope(Name,Value) uses additional
options specified by one or more Name,Value pair arguments. Name is a property name and Value is
the corresponding value. Name must appear inside single quotes (''). You can specify several name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-98 of the requirement object during
object creation. For example, requirement =
sdo.requirements.StepResponseEnvelope('PercentOvershoot',20) creates an
sdo.requirements.StepResponseEnvelope object and specifies the PercentOvershoot
property as 20.

 sdo.requirements.StepResponseEnvelope class

2-97

Properties
Description

Requirement description, specified as a character vector. For example, 'Requirement on signal
1'.

Default: ''

FinalValue

Final value of the step response. Must be a finite real scalar not equal to the InitialValue
property.

Default: 1

InitialValue

Value of the signal level before the step response starts. Must be a finite real scalar not equal to the
FinalValue. property.

Default: 0

Name

Requirement name, specified as a character vector.

Default: ''

PercentOvershoot

The percentage amount by which the signal can exceed the final value before settling. This amount is
specified as a percentage of step range.

Must be a real finite scalar between [0 100] and greater than PercentSettling.

Use set to set this and the PercentSettling properties simultaneously.

Default: 10

PercentRise

The percentage of step range value used with the RiseTime property to define the overall rise time
characteristics.

Must be a real finite scalar between [0 100] and less than (100–PercentSettling).

Use set to set this and the PercentSettling properties simultaneously.

Default: 80

PercentSettling

The percentage of the step range value that defines the settling range of settling time characteristic
specified in the SettlingTime property.

2 Classes

2-98

Must be a real positive finite scalar between [0 100] and less than (100 – PercentRise) and less
than PercentOvershoot.

Use set to set this and the PercentOvershoot and PercentRise properties simultaneously.

Default: 1

PercentUndershoot

The percentage amount by which the signal can undershoot the initial value. This amount is specified
as a percentage of step range.

Must be a positive finite scalar between [0 100].

Default: 1

RiseTime

Time taken, in seconds, for the signal to reach the percentage of the step range value specified in
PercentRise.

Must be a finite positive real scalar and less than the SettlingTime. Time is relative to the
StepTime.

Use set to set this and the StepTime and SettlingTime properties simultaneously.

Default: 5

SettlingTime

Time taken, in seconds, for the signal to settle within a specified settling range around the final value.
This settling range is defined as the final value plus or minus the settling range, specified in
PercentSettling.

Must be a finite positive real scalar, greater than RiseTime. Time is relative to the StepTime.

Use set to set this and the RiseTime properties simultaneously.

Default: 7

StepTime

Time, in seconds, when the step response starts.

Must be a finite real nonnegative scalar, less than the RiseTime property.

Use set to set this and the RiseTime properties simultaneously.

Default: 0

TimeUnits

Time units of the requirement, specified as one of the following values:

• 'nanoseconds'

 sdo.requirements.StepResponseEnvelope class

2-99

• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

Default: 'second'

Type

Step response bound type.

This property is read-only and set to '<='.

Methods

evalRequirement Evaluate satisfaction of step response requirement

Copy Semantics
Handle. To learn how handle classes affect copy operations, see Copying Objects.

Examples
Construct a step response bound object and specify percent overshoot.

 r = sdo.requirements.StepResponseEnvelope;
 r.PercentOvershoot = 20;

Alternatively, you can specify the percent overshoot during construction:

 r = sdo.requirements.StepResponseEnvelope('PercentOvershoot',20);

Alternatives
Use getbounds to get the bounds specified in a Check Step Response Characteristics block.

See Also
copy | get | set

Topics
Class Attributes
Property Attributes

2 Classes

2-100

sdo.SampleOptions class
Package: sdo

Parameter sampling options for sdo.sample

Description
Specify method options to generate parameter samples, using sdo.sample, for sensitivity analysis.

Construction
opt = sdo.SampleOptions creates an sdo.SampleOptions object and assigns default values to
its properties.

Use dot notation to modify the property values. For example:

opt = sdo.SampleOptions;
opt.Method = 'lhs';

Properties
Method

Sampling method, specified as one of the following values:

• 'random' — Random samples are drawn from the probability distributions specified for the
parameters.

Suppose you specified a value for the RankCorrelation property of the sdo.ParameterSpace
object that you use for sampling. The software uses the Iman-Conover method to impose the
parameter correlations.

• 'lhs' — Latin hypercube samples are drawn from the probability distributions specified for the
parameters. Use this option for a more systematic space-filling approach than random sampling.

Suppose you specified a value for the RankCorrelation property of the sdo.ParameterSpace
object that you use for sampling. The software uses the Iman-Conover method to impose the
parameter correlations.

• 'sobol' — Sobol quasirandom sequences are drawn from the probability distributions specified
for the parameters. Use this option for highly systematic space-filling. Since Sobol method is
deterministic, if you want slightly different sequences, modify the MethodOptions property. For
more information, see “Generating Quasi-Random Numbers” (Statistics and Machine Learning
Toolbox).

Suppose you specified a value for the RankCorrelation property of the sdo.ParameterSpace
object that you use for sampling. The software uses the Iman-Conover method to impose the
parameter correlations.

Requires Statistics and Machine Learning Toolbox software.
• 'halton' — Halton quasirandom sequences are drawn from the probability distributions
specified for the parameters. Like the Sobol method, you can use Halton method for highly

 sdo.SampleOptions class

2-101

systematic space-filling. However, Sobol method gives more systematic space-filling if you have
many parameters in your parameter set. Since Halton method is deterministic, if you want slightly
different sequences, set the MethodOptions property. For more information, see “Generating
Quasi-Random Numbers” (Statistics and Machine Learning Toolbox).

Suppose you specified a value for the RankCorrelation property of the sdo.ParameterSpace
object that you use for sampling. The software uses the Iman-Conover method to impose the
parameter correlations.

Requires Statistics and Machine Learning Toolbox software.
• 'copula' — Random samples are drawn from a copula. Use this option to impose correlations

between the parameters using copulas. You specify the copula family and correlation type in the
MethodOptions property. You must also specify the value of the RankCorrelation property of
the sdo.ParameterSpace object that you use for sampling.

Requires Statistics and Machine Learning Toolbox software.

For more information about the sampling methods, see “Generate Parameter Samples for Sensitivity
Analysis”.

Default: 'random'

MethodOptions

Sample method options, specified as a structure. MethodOptions is applicable only when Method is
specified as 'sobol', 'halton', or 'copula'.

• Method is 'sobol' — Since Sobol method is deterministic, if you want to generate slightly
different sequences, modify the default values in MethodOptions. Specify MethodOptions as a
structure with the following fields:

• Skip — Number of initial points to ignore in a Sobol sequence of points, specified as a non-
negative integer. The default value is 1.

• Leap — Number of points to ignore between selected points in a Sobol sequence, specified as a
non-negative integer. The default value is 0.

• ScrambleMethod — Shuffling of the Sobol sequence points, specified as a structure with
following fields:

• Type — Name of the scramble method, specified as 'MatousekAffineOwen' (Matousek-
Affine-Owen scrambling algorithm [1]). Sobol sets with scrambling are not deterministic.
Successive runs using this algorithm generate different points. To always generate the
same Sobol sequence points, reset the random number generator each time using the rng
command.

• Options — Specify as an empty cell array.

For example, specify ScrambleMethod as
struct('Type','MatousekAffineOwen',Options',{{}}).

If you do not want to scramble the sequence, specify ScrambleMethod as [].

The default value for ScrambleMethod is 0x0 struct.
• PointOrder — Order in which the Sobol sequence points are produced, specified as one of

the following:

2 Classes

2-102

• 'standard' — Points produced match the original Sobol sequence implementation.
• 'graycode' — Sobol sequence is generated using an implementation that uses the Gray

code of the index instead of the index itself.

The default value for PointOrder is 'standard'.

Sobol method is used for a highly systematic space-filling. However, some combinations of the
MethodOptions values may result in sequence points that are clustered and not space-filling.
After you have generated the samples using sdo.sample, view the generated samples to ensure
that they are space-filling.

• Method is 'halton' — Since Halton method is deterministic, if you want to generate slightly
different sequences, modify the default values in MethodOptions. Specify MethodOptions as a
structure with the following fields:

• Skip — Number of initial points to ignore in a Halton sequence of points, specified as a non-
negative integer. The default value is 1.

• Leap — Number of points to ignore between selected points in a Halton sequence, specified as
a non-negative integer. The default value is 0.

• ScrambleMethod — Shuffling of the Halton sequence points, specified as a structure with
following fields:

• Type — Name of the scramble method, specified as 'RR2' (reverse-radix algorithm [2]).
• Options — Specify as an empty cell array.

For example, specify ScrambleMethod as struct('Type','RR2',Options',{{}}).

If you do not want to scramble the sequence, specify ScrambleMethod as [].

The default value for ScrambleMethod is 0x0 struct.

Halton method is used for a highly systematic space-filling. However, some combinations of the
MethodOptions values may result in sequence points that are clustered and not space-filling.
After you have generated the samples using sdo.sample, view the generated samples to ensure
that they are space-filling.

• Method is 'copula' — MethodOptions is a structure with the following fields:

• Family — Copula family, specified as one of the following values:

• 'Gaussian' — Gaussian copula
• 't' — t copula

The default value is 'Gaussian'.
• Type — Rank correlation type, specified as one of the following values:

• 'Spearman' — Spearman’s rank correlation
• 'Kendall' — Kendall’s rank correlation

The default value is 'Spearman'.
• DOF — Degrees of freedom of t copula, specified as a positive number.

For a Gaussian copula, specify DOF as []. Specification of DOF is required for a t copula.

 sdo.SampleOptions class

2-103

The default value is [].

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Specify Random Sampling Method

opt = sdo.SampleOptions

opt =
 SampleOptions with properties:

 Method: 'random'
 MethodOptions: [0x0 struct]

Specify Latin Hypercube Sampling Method

opt = sdo.SampleOptions;
opt.Method = 'lhs';

Specify Sobol Sampling method

Create a default option set.

opt = sdo.SampleOptions;

Specify the sampling method as Sobol.

opt.Method = 'sobol';

Specify a scrambling method.

opt.MethodOptions.ScrambleMethod = struct('Type','MatousekAffineOwen','Options',{{}});

Specify Copula-Based Sampling Method

opt = sdo.SampleOptions;
opt.Method = 'copula';
opt.MethodOptions.Family = 't';
opt.MethodOptions.DOF = 2;

2 Classes

2-104

References
[1] Matousek, J. “On the L2-Discrepancy for Anchored Boxes.” Journal of Complexity. Vol. 14, Number

4, 1998, pp. 527–556.

[2] Kocis, L., and W. J. Whiten. “Computational Investigations of Low-Discrepancy Sequences.” ACM
Transactions on Mathematical Software. Vol. 23, Number 2, 1997, pp. 266–294.

See Also
sdo.sample

Topics
“Generate Parameter Samples for Sensitivity Analysis”

 sdo.SampleOptions class

2-105

sdo.SimulationTest class
Package: sdo

Simulation scenario description

Syntax
sim_obj = sdo.SimulationTest(modelname)

Description
Create a scenario to simulate a Simulink model. A simulation scenario specifies input signals, model
parameter and initial state values, and signals to log for a model. You can also specify linear systems
to compute if you have Simulink Control Design toolbox. Use a simulation scenario to simulate a
model with alternative inputs and model parameter and initial state values, without modifying the
model.

Construction
sim_obj = sdo.SimulationTest(modelname) constructs an sdo.SimulationTest object and
assigns the specified model name to the ModelName property and default values to the remaining
properties.

You can also construct an sdo.SimulationTest object using the createSimulator method of an
sdo.Experiment object. The createSimulator method configures the properties of the
sdo.SimulationTest object to simulate the model associated with the experiment.

Input Arguments

modelname

Simulink model name, specified as a character vector or string. For example,
'sdoHydraulicCylinder'.

The model must be on the MATLAB path.

Properties
InitialState

Model initial state for simulation.

This property can be any initial state format that sim command supports.

Inputs

Input signals.

Specify signals to apply to root level input ports when simulating the model. The signal can be any
input signal format that the sim command supports.

2 Classes

2-106

Default: []

LoggedData

Data logged during simulation.

You must also specify the signals to log in the LoggingInfo property. The logged data is stored in a
Simulink.SimulationOutput object and is populated by the sim method.

This property is read-only.

Default: []

LoggingInfo

Signals to log when simulating a model.

This property is a Simulink.SimulationData.ModelLoggingInfo object. Specify the signals to
log in its Signals property.

Default: 1x1 Simulink.SimulationData.ModelLoggingInfo object

SystemLoggingInfo

Linear system logging settings.

This property is a vector of sdo.SystemLoggingInfo objects.

If you specify the SystemLoggingInfo property, the sim method linearizes the model during
simulation.

Note You can also use linearize command from Simulink Control Design to compute linear
systems. However, to use fast restart, you must use SystemLoggingInfo property and sim instead.

Default: []

ModelName

Simulink model name associated with the simulation scenario. The model must be on the MATLAB
path.

Name

Name of the scenario

Default: ''

Parameters

Parameter values.

The software changes the model parameters to the specified values before simulating the model and
restores them to their original value after the simulation completes.

This property must be a param.Continuous object.

 sdo.SimulationTest class

2-107

Default: []

Methods

fastRestart Simulate Simulink model in fast restart mode using simulation scenario
find Find logged data set
prepareToDeploy Configure simulation scenario for deployment with Simulink Compiler
sim Simulate Simulink model using simulation scenario
who List logged data names

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Create Simulation Scenario for Model

Create a simulation scenario for a model.

Pressures = Simulink.SimulationData.SignalLoggingInfo;
Pressures.BlockPath = 'sdoHydraulicCylinder/Cylinder Assembly';
Pressures.OutputPortIndex = 1;
simulator = sdo.SimulationTest('sdoHydraulicCylinder');

Specify model signals to log.

simulator.LoggingInfo.Signals = [Pressures];

Create Simulation Scenario for Experiment

Specify an experiment for a model.

experiment = sdo.Experiment('sdoRCCircuit');

Create a simulation scenario for the experiment.

sim_obj = createSimulator(experiment);

Alternatives
“Design Optimization to Meet Step Response Requirements (GUI)”

See Also
sdo.optimize | sdo.evaluate | sdo.SystemLoggingInfo | createSimulator |
sdo.Experiment

2 Classes

2-108

Topics
“Design Optimization to Meet Step Response Requirements (Code)”
“Design Optimization to Meet a Custom Objective (Code)”
“Estimate Model Parameter Values (Code)”
“Estimate Model Parameters and Initial States (Code)”
“Design Optimization to Meet Frequency-Domain Requirements (Code)”
Class Attributes
Property Attributes

 sdo.SimulationTest class

2-109

sdo.SystemLoggingInfo class
Package: sdo

Specify linear system logging information

Syntax
sys = sdo.SystemLoggingInfo
sys = sdo.SystemLoggingInfo(Name,Value)

Description
Specify linear system logging information. Use sdo.SystemLoggingInfo object to set the
SystemLoggingInfo property of sdo.SimulationTest, to specify linear systems to log when
simulating the model. You can configure sdo.SystemLoggingInfo to compute the linear system
with or without using any frequency-domain check blocks defined in the model.

Construction
sys = sdo.SystemLoggingInfo constructs an sdo.SystemLoggingInfo object, sys, with
default linear system logging settings. To modify settings for your specific application, use dot
notation.

sys = sdo.SystemLoggingInfo(Name,Value) specifies additional linear system logging
settings, using one or more Name,Value pair arguments. Name is a property name on page 2-110 and
Value is the corresponding value. Name must appear inside single quotes (''). You can specify
several name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Use Name,Value arguments to specify properties on page 2-110 of sdo.SystemLoggingInfo
object during object creation. For example, sys =
sdo.SystemLoggingInfo('LoggingName','linear_system1') creates a
sdo.SystemLoggingInfo object specifying the LoggingName property as linear_system1.

Properties
Source — Specify how to compute the linear system
'' (default) | character vector

Specify how to compute the linear system, with or without using frequency-domain check blocks in
the model, specified as a character vector. To use a frequency-domain check block in the model,

2 Classes

2-110

specify Source as the full path of the check block. For example, 'sdorectifier/Filter Design
Requirements'. To not use a model check block, set Source to a name or use the default value ''.

LoggingName — Name used for the computed linear system
'sys' (default) | character vector

Name used for the computed linear system, specified as a character vector. LoggingName appears in
the sdo.SimulationTest.LoggedData when the simulation is run.

LinearizationIOs — Linearization input/output points
[] (default) | vector of linearization IOs

Linearization input/output (IO) points, specified as a vector of linearization IOs. Create
LinearizationIOs using the linio command from Simulink Control Design.

If Source is specified as path to a model frequency-domain check block, and LinearizationIOs is
non-empty, the linearization IO points of the check block are overwritten when the model is
simulated.

SnapshotTimes — Linearization snapshot times
[] (default) | scalar | vector of scalars

Linearization snapshot times, specified as a scalar or vector of scalars.

If Source is specified as path to a model frequency-domain check block, and SnapshotTimes is non-
empty, the linearization snapshot times of the check block are overwritten when the model is
simulated.

LinearizationOptions — Linearization options
[] (default) | linearization option set

Linearization options to use when computing the linear system, specified as a linearization option set.
To set these options, use the linearizeOptions command from Simulink Control Design.

If Source is specified as path to a model frequency-domain check block, and
LinearizationOptions is non-empty, the linearization options of the check block are overwritten
when the model is simulated.

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Specify Linear System Logging Settings

Open the model.

open_system('sldo_model1')

 sdo.SystemLoggingInfo class

2-111

Specify the input and output points that define the linear system to be computed.

IOs(1) = linio('sldo_model1/Sum',1,'input');
IOs(2) = linio('sldo_model1/Plant',1,'output');

Create an sdo.SystemLoggingInfo object to specify the linear system logging settings.

sys1 = sdo.SystemLoggingInfo;
sys1.Source = 'Specified IOs';
sys1.LoggingName = 'Linear_System';
sys1.LinearizationIOs = IOs;
sys1.SnapshotTimes = 0;

Version History
Introduced in R2015b

See Also
sdo.SimulationTest | linio | linearizeOptions | fastRestart

Topics
“Design Optimization to Meet Frequency-Domain Requirements (Code)”
“Use Fast Restart Mode During Response Optimization”
“Use Fast Restart Mode During Sensitivity Analysis”

2 Classes

2-112

Methods and Apps

3

copy
Copy requirement

Syntax
copy_req = copy(req)

Description
copy_req = copy(req) copies a requirement object
(sdo.requirements.StepResponseEnvelope, ...) to a new object of the same type.

For more information, see copy.

Input Arguments
req

requirement object (sdo.requirements.StepResponseEnvelope, ...)

Output Arguments
copy_req

requirement object (sdo.requirements.StepResponseEnvelope, ...), which is a copy of req.

Version History
Introduced in R2011b

See Also
get | handle

3 Methods and Apps

3-2

evalRequirement
Class: sdo.requirements.BodeMagnitude
Package: sdo.requirements

Evaluate Bode magnitude bound for linear system

Syntax
c = evalRequirement(req,lin_sys)

Description
c = evalRequirement(req,lin_sys) evaluate whether a linear system satisfies the specified
piecewise-linear Bode magnitude bound.

Input Arguments
req

sdo.requirements.BodeMagnitude object.

For MIMO systems, the bound applies to each input/output (I/O) channel.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments
c

Column vector indicating the maximum signed distance of the system gain to each edge specified in
req. Negative values indicate that the bound edge is satisfied and positive values that the bound
edge is violated.

For MIMO systems, a matrix of signed distances where each column represents an I/O pair and gives
the distance of that IO pair gain to each edge in the bounds.

Examples
Evaluate Bode magnitude requirement.

 req = sdo.requirements.BodeMagnitude;
 sys = tf(1,[1 2 2 1])
 c = evalRequirement(req,sys);

c is negative, which indicates that the system satisfies the gain requirement.

 evalRequirement

3-3

See Also
sdo.requirements.BodeMagnitude | get | set | copy

3 Methods and Apps

3-4

evalRequirement
Evaluate peak gain bound for linear system

Syntax
c = evalRequirement(req,lin_sys)

Description
c = evalRequirement(req,lin_sys) evaluates whether a linear system satisfies the specified
peak gain (infinity norm of the system) bound. The closed loop is computed using the feedback sign
specified in the FeedbackSign property of req.

Input Arguments
req

sdo.requirements.ClosedLoopPeakGain object.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments
c

• Signed distance of the closed-loop peak gain to the bound if the Type property of req is <= or ==.
When <=, negative values indicate that the bound is satisfied while positive values indicate the
bound is violated. When ==, any value other than 0 indicate that the bound is violated.

• Peak gain if the Type property of req is min.

Examples
Evaluate peak gain requirement.

 req = sdo.requirements.ClosedLoopPeakGain;
 sys = tf(0.5,[1 3 3 1]);
 c = evalRequirement(req,sys);

c is negative, which indicates that the system satisfies the gain requirement.

See Also
sdo.requirements.ClosedLoopPeakGain | get | set | copy

 evalRequirement

3-5

evalRequirement
Class: sdo.requirements.FunctionMatching
Package: sdo.requirements

Evaluate satisfaction of function matching requirement

Syntax
evaluation = evalRequirement(requirement,dependentVar)
evaluation = evalRequirement(requirement,dependentVar,
indepVar1,...,indepVarN)

Description
evaluation = evalRequirement(requirement,dependentVar) evaluates whether the test
data dependentVar matches the function that is specified in the Type property of the requirement
object. The software computes the specified function using default independent variable vectors with
value [0 1 2 ...]. There is an independent variable vector corresponding to each dimension of
dependentVar, and the length of each independent variable vector is the same as the size of
dependentVar in the corresponding dimension.

For example, consider a two-dimensional dependentVar of size 3-by-2. To compute a linear function
of the form a0 + a1X1 + a2X2, the software uses the independent variable vectors X1 = [0 1 2] and
X2 = [0 1]. The software calculates the fit coefficients a0, a1, and a2 and then calculates the error
between the test data and the linear function.

evaluation = evalRequirement(requirement,dependentVar,
indepVar1,...,indepVarN) specifies the independent variable vectors to use for computing the
function.

Input Arguments
requirement — Function matching requirement
sdo.requirements.FunctionMatching object

Function matching requirement, specified as an sdo.requirements.FunctionMatching object.
You specify the function to be matched in requirement.Type.

dependentVar — Dependent variable test data to be evaluated
vector | matrix | multidimensional array

Dependent variable test data to be evaluated, specified as a vector, matrix, or multidimensional array.

indepVar1,...,indepVarN — Independent variable vectors
vectors

Independent variable vectors used for computing the function, specified as real, numeric, monotonic
vectors. The independent variable vectors must satisfy the following characteristics:

3 Methods and Apps

3-6

• The number of independent variables N must equal the number of dimensions of the test data.

For example, use two independent variables when the test data dependentVar is a matrix, and
use three independent variables when the test data is a three-dimensional array.

• The first independent variable vector specifies coordinates going down test data rows, and the
second independent variable vector specifies coordinates going across test data columns. The Nth

independent variable vector specifies coordinates along the Nth dimension of dependentVar.
• The number of elements in each independent variable vector must match the size of test data in

the corresponding dimension.
• The independent variable vectors must be monotonically increasing or decreasing.

In the requirement object, you can specify centering and scaling of the independent variables using
the Centers and Scales properties. The independent variable vectors specified by you are divided
by these Scales values after subtracting the Centers values. For more information, see the
property descriptions on the sdo.requirements.FunctionMatching reference page.

You can also specify independent variable vectors using a cell array. The number of elements in the
cell array must match the number of dimensions in the test data, dependentVar. For example,
suppose that dependentVar is two-dimensional, you can use either of the following syntaxes:

evaluation = evalRequirement(requirement,dependentVar,independentVar1,independentVar2);
evaluation = evalRequirement(requirement,dependentVar,{independentVar1,independentVar2});

Output Arguments
evaluation — Evaluation of the function matching requirement
scalar | vector | matrix | multidimensional array

Evaluation of the function matching requirement, returned as a scalar, vector, matrix, or array,
depending on the value of requirement.Method.

evalRequirement computes an error signal that is the difference between test data and the
specified function of the independent variables. The error signal is then processed further to compute
evaluation. The value of evaluation depends on the error processing method specified in
requirement.Method.

requirement.Method evaluation
'SSE' evaluation is returned as a scalar value equal

to the sum of squares of the errors.

A positive value indicates that the requirement is
violated, and 0 value indicates that the
requirement is satisfied. The closer evaluation
is to 0, the better the match between the function
and test data.

 evalRequirement

3-7

requirement.Method evaluation
'SAE' evaluation is returned as a scalar value equal

to the sum of absolute values of the errors.

A positive value indicates that the requirement is
violated, and 0 value indicates that the
requirement is satisfied. The closer evaluation
is to 0, the better the match between the function
and test data.

'Residuals' evaluation is returned as a vector, matrix, or
array of the same size as the test data
dependentVar. evaluation contains the
difference between the test data and the specified
function of the independent variables.

Examples

Evaluate Function Matching Requirement for One-Dimensional Variable

Create a requirement object to match one-dimensional variable data to a linear function.

Requirement = sdo.requirements.FunctionMatching;

Specify the Centers and Scales properties for a one-dimensional variable by using the set
command. You specify these properties because their default values are for a two-dimensional
variable.

set(Requirement,'Centers',0,'Scales',1);

Specify test data for the one-dimensional variable.

dependentVariable = 0.5+5.*(1:5);

Evaluate the requirement.

evaluation = evalRequirement(Requirement,dependentVariable)

evaluation = 5.6798e-30

The software computes the linear function using the default independent variable vector [0 1 2 3
4] because you did not specify any independent variable vectors. There is one independent variable
because the number of independent variables must equal the number of dimensions of the test data.
The size of the independent variable vector equals the size of the test data.

In this example, the processing method has the default value of 'SSE', so evaluation is returned
as a scalar value equal to the sum of squares of the errors. evaluation is very close to zero,
indicating that the dependentVariable test data almost matches a linear function. Note that
machine precision can affect the value of evaluation at such small values.

3 Methods and Apps

3-8

Match Quadratic Function to Two-Dimensional Variable Data

Create a requirement object, and specify the function to be matched.

Requirement = sdo.requirements.FunctionMatching('Type','purequadratic');

The object specifies that the variables should match a quadratic function with no cross-terms.

Create 2-dimensional test data for the variable.

[X1,X2] = ndgrid((-1:1),(-4:2:4));
dependentVar = X1.^2 + X2.^2;

Specify independent variable vectors to compute the quadratic function.

The number of independent variable vectors must equal the dimensionality of the test data. In
addition, the independent variable vectors must be monotonic and have the same size as the test data
in the corresponding dimension.

indepVar1 = (-2:0);
indepVar2 = (-6:2:2);

Evaluate if the test data satisfies the requirement.

evaluation = evalRequirement(Requirement,dependentVar,indepVar1,indepVar2)

evaluation = 1.5751e-29

The evalRequirement command computes an error signal that is the difference between test data
and the function of the independent variable vectors. The error signal is further processed to
compute evaluation, based on the error processing method specified in Requirement.Method.

In this example, the processing method has the default value of 'SSE', so evaluation is returned
as a scalar value equal to the sum of squares of the errors. evaluation is very close to zero,
indicating that the dependentVariable test data almost matches a pure quadratic function.

Create test data with cross-terms.

dependentVariable2 = X1.^2 + X2.^2 + X1.*X2;

Evaluate the requirement for the new test data.

evaluation2 = evalRequirement(Requirement,dependentVariable2,indepVar1,indepVar2)

evaluation2 = 5.3333

The output evaluation2 is greater than evaluation and is substantially different from 0,
indicating that dependentVariable2 does not fit a pure-quadratic function as well as
dependentVariable fits the function.

Version History
Introduced in R2016b

 evalRequirement

3-9

See Also
sdo.requirements.FunctionMatching

3 Methods and Apps

3-10

evalRequirement
Class: sdo.requirements.GainPhaseMargin
Package: sdo.requirements

Evaluate gain and phase margin bounds for linear system

Syntax
c = evalRequirement(req,lin_sys)

Description
c = evalRequirement(req,lin_sys) evaluates whether a linear system satisfies the specified
gain and phase margin bounds. The gain and phase margins are computed using the feedback sign
specified in the FeedbackSign property of req.

Input Arguments
req

sdo.requirements.GainPhaseMargin object.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments
c

• Signed distance of the computed gain and phase margins to the bound if the Type property of req
is >= or ==.

Signed distance to the gain margin bound appear before the signed distance to the phase margin
bound. Negative values indicate that the bound is satisfied while positive values indicate the
bound is violated. Unstable loops return positive values. When ==, any number other than 0
indicates that the bound is not satisfied.

• Negative of the gain and phase margins such that minimizing the values maximizes the margins if
the Type property of req is 'max. Unstable loops return positive values.

Examples
Evaluate gain and phase margin requirements.

 req = sdo.requirements.GainPhaseMargin;
 sys = tf(0.5,[1 3 3 1]);
 c = evalRequirement(req,sys);

c is negative, which indicates that the system satisfies the gain and phase margin requirement.

 evalRequirement

3-11

See Also
get | set | copy

3 Methods and Apps

3-12

evalRequirement
Class: sdo.requirements.MonotonicVariable
Package: sdo.requirements

Evaluate satisfaction of monotonic variable requirement

Syntax
evaluation = evalRequirement(requirement,variableData)

Description
evaluation = evalRequirement(requirement,variableData) evaluates whether the test
data, variableData, satisfy the monotonic variable requirement that is specified in the
requirement object. A positive evaluation value indicates that the requirement has been violated.

Input Arguments
requirement — Monotonic variable requirement
sdo.requirements.MonotonicVariable object

Monotonic variable requirement, specified as an sdo.requirements.MonotonicVariable object.
In the object, you specify the monotonicity required for each dimension of the variable in
requirement.Type.

variableData — Variable data to be evaluated
vector | matrix | array

Variable data to be evaluated, specified as a real numeric vector, matrix, or multidimensional array.

Output Arguments
evaluation — Evaluation of the monotonic requirement
column vector

Evaluation of the monotonic requirement, returned as a column vector. The number of elements in
evaluation is the same as the number of dimensions in variableData. A positive value in the
vector indicates that the requirement has been violated for the corresponding dimension of the
variableData. The magnitude of evaluation corresponds to the difference between two
successive elements that come closest to violating the requirement. For an example, see “Evaluate a
Monotonic Variable Requirement” on page 3-13.

Examples

Evaluate a Monotonic Variable Requirement

Create a requirement object with default properties.

 evalRequirement

3-13

Requirement = sdo.requirements.MonotonicVariable;

Specify the requirement type for a 1-dimensional variable as monotonically decreasing.

Requirement.Type = {'>'};

Specify test data for a 1-dimensional variable.

Data = [20; 15; 25; 26];

Evaluate if the test data satisfies the requirement.

Evaluation = evalRequirement(Requirement,Data)

Evaluation = 10

Since Evaluation is a positive number, it shows that the requirement is violated. To understand the
magnitude of Evaluation, consider the elements of the test data. While 20>15 satisfies the '>'
requirement, 15<25 and 25<26 violate the requirement, resulting in a positive Evaluation value.
Because the elements 15 and 25 violate the requirement the most, the magnitude of Evaluation is
10, the difference between these elements.

Evaluate Monotonic Variable Requirement for a Multidimensional Variable

Create a requirement object, and specify the monotonicity for a 2-dimensional variable.

Requirement = sdo.requirements.MonotonicVariable('Type',{'<','>'});

The object requires the elements in the first dimension of the variable to be monotonically increasing
and the elements in the second dimension to be monotonically decreasing.

Specify 2-dimensional test data for the variable.

Data = [10 5; 20 24;30 33];

Evaluate if the test data satisfies the requirement.

Evaluation = evalRequirement(Requirement,Data)

Evaluation = 2×1

 -9
 4

Evaluation is column vector with size corresponding to the dimensions of the test data.

To understand the magnitude of Evaluation, consider the elements of the test data along each
dimension. For the first dimension of the test data, going down the rows, the software checks the '<'
requirement. Since 10<20<30 and 5<24<33 both satisfy the requirement, Evaluation(1) is a
negative number. Because 24<33 comes closest to violating the requirement, the magnitude of
Evaluation for this dimension is 9, the difference between these two elements.

For the second dimension of the test data, going across the columns, the software checks, the '>'
requirement. While 10>5 satisfies the requirement, 20<24 and 30<33 do not satisfy the requirement.

3 Methods and Apps

3-14

This results in Evaluation(2) being a positive number, indicating that the requirement is not
satisfied. Because the elements 20 and 24 violate the requirement the most, the magnitude of
Evaluation(2) is 4, the difference between these elements.

Version History
Introduced in R2016b

See Also
sdo.requirements.MonotonicVariable

 evalRequirement

3-15

evalRequirement
Class: sdo.requirements.OpenLoopGainPhase
Package: sdo.requirements

Evaluate gain and phase bounds on Nichols response of linear system

Syntax
c = evalRequirement(req,lin_sys)

Description
c = evalRequirement(req,lin_sys) evaluates whether a linear system satisfies the specified
open-loop gain and phase bounds on the Nichols response.

Input Arguments
req

sdo.requirements.OpenLoopGainPhase object.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments
c

Vector of maximum signed distances of the response to each piecewise linear edge. Negative values
indicate that the bound edge is satisfied and positive values indicate the bound is violated.

Examples
Evaluate open-loop gain and phase requirements.

req = sdo.requirements.OpenLoopGainPhase;
sys = tf(0.5,[1 3 3 1]);
c = evalRequirement(req,sys);

See Also
sdo.requirements.OpenLoopGainPhase | get | set | copy

3 Methods and Apps

3-16

evalRequirement
Class: sdo.requirements.PhasePlaneEllipse
Package: sdo.requirements

Evaluate satisfaction of elliptical bound on phase plane trajectory of two signals

Syntax
evaluation = evalRequirement(requirement,signal1,signal2)
evaluation = evalRequirement(requirement,signals)

Description
evaluation = evalRequirement(requirement,signal1,signal2) evaluates whether the
phase plane trajectory of the two signals specified in signal1 and signal2 satisfies the elliptical
bound specified in the requirement object. The phase plane trajectory is a plot of the two signals
against each other. A positive evaluation value indicates that the requirement has been violated.

evaluation = evalRequirement(requirement,signals) specifies the two signals as an n-by-2
array. The first column corresponds to the first signal, and the second column corresponds to the
second signal. n is the number of time points in the signals.

Input Arguments
requirement — Phase plane ellipse requirement
sdo.requirements.PhasePlaneEllipse object

Phase plane ellipse requirement, specified as an sdo.requirements.PhasePlaneEllipse object.
In the object, you specify the characteristics of the bounding ellipse such as the radii, center, and
rotation of the ellipse. You also specify whether the ellipse is an upper or lower bound.

signal1,signal2 — Signals to be evaluated
two comma-separated timeseries objects

Signals to be evaluated, specified as two comma-separated timeseries objects.

signal1 corresponds to the x-value of the phase plane trajectory, and signal2 corresponds to the
y-value of the phase plane trajectory. For an example, see “Evaluate Elliptical Bound on Phase Plane
Trajectory” on page 3-18.

signals — Signals to be evaluated
n-by-2 array

Signals to be evaluated, specified as an n-by-2 array. The first column corresponds to the first signal,
the x-value of the phase plane trajectory. The second column corresponds to the second signal, the y-
value of the phase plane trajectory. n is the number of time points in the signals. For an example, see
“Evaluate Circular Bound on Phase Plane Trajectory” on page 3-19.

 evalRequirement

3-17

Output Arguments
evaluation — Evaluation of the phase plane ellipse requirement
scalar | column vector

Evaluation of the phase plane ellipse requirement, returned as a scalar or column vector depending
on the Method property of requirement. The evalRequirement command computes the signed
minimum distance of each point in the phase plane trajectory to the bounding ellipse.

• If requirement.Method is 'Maximum', evaluation is a scalar that is the maximum of the
signed distances. A positive value indicates that the requirement has been violated and at least
one of the trajectory points lies outside the bounding region.

• If requirement.Method is 'Residuals', evaluation is a column vector that contains the
signed distances of each point in the phase plane trajectory to the bounding ellipse. A positive
value in the vector indicates that the requirement has been violated for that time point. A negative
value or zero indicates that the requirement has been satisfied for that time point.

Examples

Evaluate Elliptical Bound on Phase Plane Trajectory

Create a default requirement object.

Requirement = sdo.requirements.PhasePlaneEllipse;

The requirement object specifies the bounding ellipse as an upper bound with center located at [0,0],
and no rotation. The x-axis radius of the ellipse is 1 and a y-axis radius is 0.5.

Specify the test signal data as timeseries objects.

signal1 = timeseries(1-exp(-(0:10)'));
signal2 = timeseries(sin((0:10)'));

Evaluate the requirement.

Evaluation = evalRequirement(Requirement,signal1,signal2)

Evaluation = 0.6997

The default method for requirement evaluation, Requirement.Method is 'Maximum'. Thus, the
evalRequirement command computes the signed minimum distance of each point in the phase
plane trajectory to the bounding ellipse and then returns the maximum of these distances. A positive
value indicates that the at least one point on the phase trajectory lies outside the ellipse and violates
the requirement.

To see the signed distance of each of the points on the trajectory to the phase plane ellipse, specify
the method for evaluation as 'Residuals'.

Requirement.Method = 'Residuals';

Evaluate the requirement using the new evaluation method.

Evaluation2 = evalRequirement(Requirement,signal1,signal2)

3 Methods and Apps

3-18

Evaluation2 = 11×1

 -0.5000
 0.4291
 0.5711
 -0.0078
 0.4850
 0.6695
 0.1133
 0.4079
 0.6997
 0.2102
 ⋮

Evaluation2 is the minimum distance of the phase plane trajectory to the bounding ellipse and is a
column vector with length equal to the length of the signals.

A negative value indicates that the phase plane trajectory of the two signals at the corresponding
time point lies inside the ellipse and satisfies the requirement. A positive value indicates that the
phase plane trajectory of the two signals at the corresponding time point lies outside the ellipse and
violates the requirement.

You can see that the maximum value in Evaluation2 is the same as Evaluation.

Evaluate Circular Bound on Phase Plane Trajectory

Create a default requirement object.

Requirement = sdo.requirements.PhasePlaneEllipse;

Specify a circular bound of radius 2. The bounding circle is an upper bound.

Requirement.Radius = [2 2];

Specify the test signal data.

Signals = [1 2 3 4 5 6; 10 20 30 40 50 60]';

The test data is specified as an n-by-2 array. The first column corresponds to the first signal, the x-
value of the phase plane trajectory. The second column corresponds to the second signal, the y-value
of the phase plane trajectory.

Evaluate the requirement.

Evaluation = evalRequirement(Requirement,Signals)

Evaluation =

 58.2993

 evalRequirement

3-19

A positive Evaluation value indicates that the requirement is violated.

Version History
Introduced in R2016b

See Also
sdo.requirements.PhasePlaneEllipse

3 Methods and Apps

3-20

evalRequirement
Class: sdo.requirements.PhasePlaneRegion
Package: sdo.requirements

Evaluate satisfaction of piecewise-linear bound on phase plane trajectory of two signals

Syntax
evaluation = evalRequirement(requirement,signal1,signal2)
evaluation = evalRequirement(requirement,signals)

Description
evaluation = evalRequirement(requirement,signal1,signal2) evaluates whether the
phase plane trajectory of the two signals signal1 and signal2 satisfies the piecewise-linear bound
specified in the requirement object. The phase plane trajectory is a plot of the two signals against
each other. A positive evaluation value indicates that the requirement has been violated.

evaluation = evalRequirement(requirement,signals) specifies the two signals as an n-by-2
array. The first column corresponds to the first signal, and the second column corresponds to the
second signal. n is the number of time points in the signals.

Input Arguments
requirement — Phase plane region requirement
sdo.requirements.PhasePlaneRegion object

Phase plane region requirement, specified as an sdo.requirements.PhasePlaneRegion object. In
the object, you specify the piecewise-linear bounding edges.

signal1,signal2 — Signals to be evaluated
timeseries objects

Signals to be evaluated, specified as timeseries objects.

signal1 corresponds to the x-value of the phase plane trajectory, and signal2 corresponds to the
y-value of the phase plane trajectory.

signals — Signals to be evaluated
n-by-2 array

Signals to be evaluated, specified as an n-by-2 array. The first column corresponds to the first signal,
the x-value of the phase plane trajectory. The second column corresponds to the second signal, the y-
value of the phase plane trajectory. n is the number of time points in the signals.

Output Arguments
evaluation — Evaluation of the phase plane region requirement
scalar

 evalRequirement

3-21

Evaluation of the phase plane region requirement, returned as a scalar value. The software finds the
trajectory point that is closest to the bounding region and then calculates evaluation as a scaled
distance between this point and the closest bound edge. A positive value indicates that the
requirement has been violated and some or all the trajectory points defined by the two test signals lie
outside the specified bounding region. A negative value or 0 indicates that the requirement has been
satisfied. When evaluation is 0, the closest trajectory point lies on the edge.

Examples

Evaluate Piecewise-Linear Bound on Phase Plane Trajectory

Create a default requirement object.

Requirement = sdo.requirements.PhasePlaneRegion;

The requirement object specifies the bounding region as a single edge extending from (-1,0) to (-1,1)
in the phase plane defined by two signals. Requirement.Type has the default value of '<='. This
value implies the area to the left of the edge is out of bounds, where the forward direction is the
direction of creation of the edge.

Specify the test signal data as timeseries objects.

signal1 = timeseries(1-exp(-(0:10)'));
signal2 = timeseries(sin((0:10)'));

Evaluate the requirement.

Evaluation = evalRequirement(Requirement,signal1,signal2)

Evaluation = -0.2632

A negative value indicates that the requirement is satisfied, and the phase plane trajectory of the two
test signal data is in the bounding region.

Specify Bounding Region With Multiple Edges and Evaluate the Requirement

Create a requirement object to specify a piecewise-linear bound on the phase plane trajectory of two
signals. The bound has two edges. The first edge extends from (-4,1) to (2,1). The second edge
extends from (2,1) to (2,-4).

Requirement = sdo.requirements.PhasePlaneRegion('BoundX',[-4 2; 2 2],...
 'BoundY',[1 1; 1 -4]);

Specify the bound type as '>='.

Requirement.Type = '>=';

The plot below shows the bounding edges in black. The arrows indicate the direction in which the
edges were specified. When you specify the Type property as '>=', the out-of-bound area is always
to the right of each edge, where the forward direction is the direction of creation of the edge. As a
result, the out-of bound region is the yellow shaded area, and a trajectory point located at (3,3) is in
the bounded region.

3 Methods and Apps

3-22

Evaluate the requirement for the phase plane trajectory point located at (3,3).

Evaluation = evalRequirement(Requirement,[3 3])

Evaluation = -0.6389

evalRequirement returns a negative number, indicating the requirement is satisfied.

Now create the requirement by changing the order of specification of the edges.

set(Requirement,'BoundX',[2 2; 2 -4],'BoundY',[-4 1;1 1]);

 evalRequirement

3-23

The plot shows that the edges were created in the opposite order. So, even though the requirement
type is still '>=', the out-of-bound region, which is always to the right of the edges, is now flipped.

Evaluate the requirement.

Evaluation = evalRequirement(Requirement,[3 3])

Evaluation = 0.1087

A positive Evaluation value indicates the requirement has been violated. Thus, for the same
requirement type, the trajectory point at (3,3) is out of bounds when the edges are defined in the
reverse order.

Version History
Introduced in R2016b

See Also
sdo.requirements.PhasePlaneEllipse

3 Methods and Apps

3-24

evalRequirement
Class: sdo.requirements.PZDampingRatio
Package: sdo.requirements

Evaluate damping ratio bound on linear system

Syntax
c = evalRequirement(req,lin_sys)

Description
c = evalRequirement(req,lin_sys) evaluates whether the poles of a linear system satisfies the
specified damping ratio bound.

Input Arguments
req

sdo.requirements.PZDampingRatio object.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments
c

• Signed distance of the damping ratio of each pole of the linear system to the bound, if the Type
property of req is >=, <= or ==. Negative values indicate that the bound is satisfied while positive
values indicate that the bound is violated. When ==, any value other than 0 indicates that the
bound is violated.

• Negative of the damping ratio such that minimizing the values maximizes the damping ratio, if the
Type property of req is 'max'.

Examples
Evaluate damping ratio requirement.

 req = sdo.requirements.PZDampingRatio;
 sys = tf(0.5,[1 3 3 1]);
 c = evalRequirement(req,sys);

c is negative, which indicates that the system satisfies the damping ratio requirement.

See Also
get | set | copy

 evalRequirement

3-25

evalRequirement
Class: sdo.requirements.PZNaturalFrequency
Package: sdo.requirements

Evaluate natural frequency bound on linear system

Syntax
c = evalRequirement(req,lin_sys)

Description
c = evalRequirement(req,lin_sys) evaluates whether the poles of a linear system satisfies the
specified natural frequency bound.

Input Arguments
req

Requirement object (sdo.requirements.StepResponseEnvelope, ...).

For MIMO systems, the bound applies to each input/output (I/O) channel.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments
c

• Signed distance of the natural frequency of each system pole to the bound. If the Type property of
req is >=, <=, negative values indicate that the bound is satisfied while positive values indicate
that the bound is violated. If ==, any value other than 0 indicates that the bound is violated.

• Negative of the natural frequency of the linear system poles such that minimizing the values
maximizes the natural frequency, if the Type property of req is 'max'.

Examples
Evaluate natural frequency requirement.

req = sdo.requirements.PZNaturalFrequency;
sys = tf(0.5,[1 3 3 1]);
c = evalRequirement(req,sys);

c is positive, which indicates that the system does not satisfy the natural frequency requirement.

3 Methods and Apps

3-26

See Also
sdo.requirements.PZNaturalFrequency | get | set | copy

 evalRequirement

3-27

evalRequirement
Class: sdo.requirements.PZSettlingTime
Package: sdo.requirements

Evaluate settling time bound on linear system

Syntax
c = evalRequirement(req,lin_sys)

Description
c = evalRequirement(req,lin_sys) evaluates whether the poles of a linear system satisfies the
specified settling time bound.

Input Arguments
req

sdo.requirements.PZSettlingTime object.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments
c

• Signed distance of the real component of each system pole to the bound, if the Type property of
req is <= or ==. Negative values indicate that the bound is satisfied while positive values indicate
that the bound is violated. If ==, values other than 0 indicate that the bound is violated.

• Pole locations such that minimizing the values minimizes the settling time, if the Type property of
req is 'min'.

Examples
Evaluate settling time requirement.

 req = sdo.requirements.PZSettlingTime;
 sys = tf(0.5,[1 3 3 1]);
 c = evalRequirement(req,sys);

c is positive, which indicates that the system does not satisfy the settling time requirement.

See Also
get | set | copy

3 Methods and Apps

3-28

evalRequirement
Class: sdo.requirements.RelationalConstraint
Package: sdo.requirements

Evaluate satisfaction of relational constraint requirement

Syntax
evaluation = evalRequirement(requirement,variableData1,variableData2)

Description
evaluation = evalRequirement(requirement,variableData1,variableData2) evaluates
whether the test data from two variables, variableData1 and variableData2, satisfy the
relational constraint that is specified in the requirement object.

Input Arguments
requirement — Relational constraint requirement
sdo.requirements.RelationalConstraint object

Relational constraint requirement, specified as an sdo.requirements.RelationalConstraint
object. In the object, you specify the relation required between the elements of two variables.

variableData1,variableData2 — Variable data to be evaluated
real numeric vectors | real numeric arrays

Variable data from the two variables to be evaluated, specified as real numeric vectors or arrays. The
test data of the two variables must be the same size.

Output Arguments
evaluation — Evaluation of the relational constraint requirement
vector | array

Evaluation of the relational constraint requirement, returned as a vector or array of the same size as
the dimensions of the test data variableData1. Note that size of variableData1 and
variableData2 is the same.

Each element in evaluation indicates whether the corresponding elements in variableData1 and
variableData2 satisfy the requirement. The value returned for each element of evaluation
depends on the relation specified in the requirement object:

 evalRequirement

3-29

requirement.Type evaluation Value When
Requirement is Satisfied

evaluation Value When
Requirement is Violated

'>' or '<' Negative number with
magnitude |v1-v2|, the
absolute value of difference
between the elements v1 and
v2 of variableData1 and
variableData2.

Positive number with magnitude
|v1-v2|, or 0 if the elements
are equal.

'>=' or '<=' Negative number with
magnitude |v1-v2|, or 0 if the
elements are equal.

Positive number with magnitude
|v1-v2|.

'==' 0 Non-zero number that is the
difference between the two
elements, v1-v2.

'~=' 0 1

Examples

Evaluate a Relational Constraint Requirement

Create a requirement object, and specify that the elements of the first variable should be greater than
elements of the second variable.

Requirement = sdo.requirements.RelationalConstraint('Type','>');

Specify test data for the two variables. The test data for both variables must be the same size.

varData1 = [20 -3 7];
varData2 = [20 -1 6];

Evaluate whether the test data satisfy the requirement.

Evaluation = evalRequirement(Requirement,varData1,varData2)

Evaluation = 1×3

 0.0000 2.0000 -1.0000

Evaluation is always the same size as the test data. When the relation type is specified as '>', if the
requirement is satisfied, evalRequirement returns a negative number with magnitude equal to the
absolute value of difference between the two elements. If the requirement is violated, Evaluation is
a positive number with magnitude equal to the absolute value of the difference between the two
elements, or 0 if the elements are equal.

The first elements of the two variables are equal, so the requirement is violated and Evaluation(1)
is 0, the difference between the elements.

The second elements, -3 and -1, violate the requirement, resulting in a positive Evaluation(2) with
value = abs(-3-(-1))= 2.

3 Methods and Apps

3-30

The third elements, 7 and 6, satisfy the requirement, resulting in a negative Evaluation(3) with
value = -abs(7-6)= -1.

Evaluate Equality of Two Variables

Create a requirement object, and specify that the elements of two variables should be equal to each
other.

Requirement = sdo.requirements.RelationalConstraint('Type','==');

Specify test data for the two variables.

varData1 = [20 15];
varData2 = [20 55];

Evaluate whether the test data satisfies the requirement.

Evaluation = evalRequirement(Requirement,varData1,varData2)

Evaluation = 1×2

 0 -40

Evaluation is the same size as the test data. When the relation type is specified as '==', if the
requirement is satisfied, evalRequirement returns 0, the difference between the elements. If the
requirement is violated, Evaluation is a non-zero number equal to the difference between the two
elements.

The first elements of the two variables are equal, so the requirement is satisfied and Evaluation(1)
is 0.

The second elements, 15 and 55, violate the requirement, resulting in a non-zero Evaluation(2).

Version History
Introduced in R2016b

See Also
sdo.requirements.RelationalConstraint

 evalRequirement

3-31

evalRequirement
Class: sdo.requirements.SignalBound
Package: sdo.requirements

Evaluate piecewise-linear bound

Syntax
c = evalRequirement(req,sig)

Description
c = evalRequirement(req,sig) evaluate whether a signal satisfies the specified piecewise-linear
bounds.

Input Arguments
req

sdo.requirements.SignalBound object.

sig

MATLAB timeseries object or nxm array, where the 1st column is time and subsequent columns are
signal values.

Output Arguments
c

Column vector indicating the maximum signed distance of the signal to each edge. Negative values
indicate that the bound edge is satisfied and positive values indicate that the bound edge is violated.

Matrix if multi-channeled signal.

Examples
Evaluate piecewise-linear bound on signal.

 req = sdo.requirements.SignalBound;
 sig = timeseries(1-exp(-(0:10)'));
 c = evalRequirement(req,sig);

c is negative, which indicates that the signal satisfies the bounds.

See Also
get | set | copy

3 Methods and Apps

3-32

evalRequirement
Class: sdo.requirements.SignalTracking
Package: sdo.requirements

Evaluate tracking requirement

Syntax
c = evalRequirement(req,sig)
c = evalRequirement(req,sig,ref)

Description
c = evalRequirement(req,sig) evaluates whether a test point signal, sig, tracks the reference
signal specified by a requirement object, req.

c = evalRequirement(req,sig,ref) evaluates whether sig tracks the reference signal
specified by ref. req specifies the error computation options. Estimating parameters for multiple
experiments requires you to repeatedly compare test point and reference signal sets. Use this syntax
if you use the same evaluation criteria for all comparisons. You vary sig and ref, and re-use the
requirement object, req.

Input Arguments
req

sdo.requirements.SignalTracking object.

sig

MATLAB timeseries object or nxm array, where the 1st column is time and subsequent columns are
signal values.

ref

Reference signal, specified as a MATLAB timeseries object.

Output Arguments
c

• Measure of how well the test point signal matches the reference signal, if the Type property of
req is '=='. Specify the algorithm used to compute the tracking measure through the Method
property.

• Signed distance of the test point signal to the reference signal, if the Type property of req is
'>=' or '<='. Negative values indicate the bound is satisfied while positive values indicate that
the bound is violated.

 evalRequirement

3-33

The command compares the reference and test point signals only at time points that are in the range
of both signals. Time points outside this range are ignored. The software uses the interpolation
method specified by ref.InterpolationTimes to compare the data in the valid time range.

Examples

Evaluate Signal Tracking Requirement

Create the reference data.

time = (0:0.1:10)';
data = 1-exp(-time);

Create the signal tracking requirement object. Specify the reference signal.

req = sdo.requirements.SignalTracking;
req.ReferenceSignal = timeseries(data,time);

Obtain the test point signal.

sig = timeseries(1-exp(-time/2),time);

Evaluate the signal tracking requirement.

c = evalRequirement(req,sig);

Evaluate Tracking Using Requirement Object to Specify Error Computation Method

When you estimate parameters for multiple experiments, you repeatedly compare test point and
reference signal sets. If you use the same evaluation criteria for all comparisons, you can use the c =
evalrequirement(req,sig,ref) syntax. You vary sig and ref, and re-use the requirement
object, req. req specifies the estimation error computation options.

Create a reference and test point signal. Then, use a requirement object to evaluate the requirement.

Create the reference signal.

time = (0:0.1:10)';
data = 1-exp(-time);
ref = timeseries(data,time);

Create the signal tracking requirement object. Specify the error computation method.

Specify 'Residuals' as the algorithm for error computation.

req = sdo.requirements.SignalTracking;
req.Method = 'Residuals';

Obtain the test point signal.

sig = timeseries(1-exp(-time/2),time);

Evaluate the signal tracking requirement.

3 Methods and Apps

3-34

c = evalRequirement(req,sig,ref);

See Also
get | set | copy

 evalRequirement

3-35

evalRequirement
Class: sdo.requirements.SingularValue
Package: sdo.requirements

Evaluate singular value bound on linear system

Syntax
c = evalRequirement(req,lin_sys)

Description
c = evalRequirement(req,lin_sys) evaluates whether a linear system satisfies the specified
singular values bound.

Input Arguments
req

sdo.requirements.SingularValue object.

For MIMO systems, the bound applies to each input/output (I/O) channel.

lin_sys

Linear system (tf, ss, zpk, frd, genss, or genfrd).

Output Arguments
c

Column vector indicating the maximum signed distance of the system gain to each edge specified in
req. Negative values indicate that the bound edge is satisfied and positive values indicate that the
bound edge is violated.

For MIMO systems, a matrix of signed distances where each column represents an I/O pair and gives
the distance of that IO pair gain to each edge in the bounds.

Examples
Evaluate singular value requirement.

 req = sdo.requirements.SingularValue;
 sys = tf(1,[1 2 2 1]);
 c = evalRequirement(req,sys);

c is negative, which indicates that the system satisfies the gain requirement.

3 Methods and Apps

3-36

See Also
sdo.requirements.SingularValue | get | set | copy

 evalRequirement

3-37

evalRequirement
Class: sdo.requirements.SmoothnessConstraint
Package: sdo.requirements

Evaluate satisfaction of smoothness constraint requirement

Syntax
evaluation = evalRequirement(requirement,variableData)
evaluation = evalRequirement(requirement,variableData,
indepVar1,...,indepVarN)

Description
evaluation = evalRequirement(requirement,variableData) evaluates whether the test
data, variableData, satisfies the smoothness constraint requirement that is specified in the
requirement object. The software calculates the gradient magnitude of the test data, and compares
it to the bound specified in the GradientBound property of the object. For calculating the gradient,
the software assumes the spacing between data points in each dimension is 1. A positive
evaluation value indicates that the requirement has been violated.

For more information about how the gradient magnitude is calculated, see “Algorithms” on page 3-
41.

evaluation = evalRequirement(requirement,variableData,
indepVar1,...,indepVarN) uses indepVar1,...,indepVarN to specify the spacing between
test data points in each of the N dimensions of the data.

Input Arguments
requirement — Smoothness constraint requirement
sdo.requirements.SmoothnessConstraint object

Smoothness constraint requirement, specified as an sdo.requirements.SmoothnessConstraint
object. In the object, you specify the upper bound on the gradient magnitude.

variableData — Variable data to be evaluated
real numeric vector | real numeric matrix | real numeric array

Variable data to be evaluated, specified as a real numeric vector, matrix, or array.

indepVar1,...,indepVarN — Spacing between points of test data in each dimension
scalar | vector

Spacing between points of test data in each of the N dimensions of the data, specified as a scalar or
vector. The independent variable indepVar1 specifies the spacing going down the test data rows,
and indepVar2 specifies spacing along the columns. Similarly, indepVarN specifies the spacing
along the Nth dimension of test data. You can specify each of indepVar1,...,indepVarN as
scalars or vectors:

3 Methods and Apps

3-38

• Scalars — Specify the spacing between test data in the corresponding dimension as a nonzero
scalar. For example, suppose that variableData is two-dimensional, and the spacing between
data in the first dimension is 5 and in the second dimension is 2. Specify indepVar1 as 5 and
indepVar2 as 2.

• Vectors — Specify the coordinates of the test data in the corresponding dimension as real,
numeric, monotonic vectors. The software uses the coordinates to compute the spacing between
test data points in the corresponding dimension. The length of the vector must match the length of
the test data in the corresponding dimension. You do not have to specify coordinates with uniform
spacing.

For example, suppose that variableData is two-dimensional, and the length of the test data in
the first and second dimension is 3 and 5, respectively. The coordinates of the test data in the first
dimension are [1 2 3]. In the second dimension, the spacing is not uniform and the coordinates
of the test data are [1 2 10 20 30]. Specify indepVar1 as [1 2 3] and indepVar2 as [1 2
10 20 30].

For an example showing the effect of specifying indepVar1,...,indepVarN, see “Specify Spacing
Between Tests Data Points” on page 3-40.

You can also specify spacing between points of test data using a cell array. The number of elements in
the cell array must match the number of dimensions in the test data, variableData. For example,
suppose that variableData is two-dimensional, and the spacing between data in the first dimension
is 2. In the second dimension, the coordinates of the test data are [1 3 6 7 10]. You can use either
of the following syntaxes to specify spacing between test data:

evaluation = evalRequirement(requirement,variableData,2,[1 3 6 7 10]);
evaluation = evalRequirement(requirement,variableData,{2,[1 3 6 7 10]});

Output Arguments
evaluation — Evaluation of the smoothness constraint requirement
scalar

Evaluation of the smoothness constraint requirement, returned as a scalar. A negative value indicates
that the bound is satisfied and a positive value indicates that the requirement has been violated.

Examples

Evaluate Smoothness Constraint on a One-Dimensional Variable

Create a requirement object to constrain the gradient magnitude of a one-dimensional variable to 5.5.

Requirement = sdo.requirements.SmoothnessConstraint('GradientBound',5);

Specify test data for the one-dimensional variable. The data is linear with slope equal to 10.

variableData = 10*(1:5);

Evaluate the requirement.

Evaluation = evalRequirement(Requirement,variableData)

Evaluation = 1

 evalRequirement

3-39

Since you did not specify the spacing between the test data points, the software computes the
gradient magnitude assuming that the spacing is 1. Evaluation is positive, indicating that the test
data gradient magnitude is greater than the bound, and the requirement is violated.

Specify Spacing Between Tests Data Points

Create a smoothness constraint requirement object, and specify the gradient bound as 3.

Requirement = sdo.requirements.SmoothnessConstraint;
Requirement.GradientBound = 3;

Specify test data with gradient magnitude value of 2 for a one-dimensional variable. The spacing
between the test points is 2.

variableData = 2:2:10;

Evaluate the requirement without specifying the spacing between test points. The software assumes a
spacing of 1.

Evaluation = evalRequirement(Requirement,variableData)

Evaluation = -0.3333

A negative value indicates that the requirement is satisfied.

Evaluate the requirement using 2 as the spacing between test data points.

Evaluation = evalRequirement(Requirement,variableData,2)

Evaluation = -0.6667

The increased spacing reduces the gradient value, and the requirement is still satisfied.

Now evaluate the requirement using 0.5 as the spacing.

Evaluation = evalRequirement(Requirement,variableData,0.5)

Evaluation = 0.3333

The decreased spacing increases the gradient magnitude value to be above the gradient bound, and
the requirement is violated.

Evaluate Smoothness Constraint on a Multidimensional Variable

Create a requirement object to constrain the gradient magnitude of a 2-dimensional variable to be
below 5.5.

Requirement = sdo.requirements.SmoothnessConstraint;

Requirement.GradientBound = 5.5;

Specify 2-dimensional test data for the variable. In this example, generate test data with a gradient
magnitude of 5, and use 2 as the spacing between the test data points in each dimension.

3 Methods and Apps

3-40

[X1,X2] = ndgrid(1:2:20,1:2:10);
variableData = 3*X1+4*X2;

The gradient of the test data in the two dimensions is 3 and 4. Therefore, the gradient magnitude of
the test data is 5 (= 32 + 42).

Specify the coordinates of the test data in each dimension.

indepVar1 = [1:2:20];
indepVar2 = [1:2:10];

The specified coordinates indicate that the spacing between the test data points in both dimensions is
2.

Evaluate if the test data satisfies the requirement.

Evaluation = evalRequirement(Requirement,variableData,indepVar1,indepVar2)

Evaluation = -0.0909

Evaluation is a negative number, indicating that the requirement is satisfied, and the test data
gradient magnitude is below the specified bound.

Algorithms
To understand how the gradient magnitude is computed, consider test data F from a two-dimensional
variable that is a function of independent variables x1 and x2. The gradient is defined as:

∇F = ∂F
∂x1

i + ∂F
∂x2

j

The gradient magnitude is:

∇F = ∂F
∂x1

2
+ ∂F
∂x2

2

Similarly, the gradient for an N-dimensional variable is:

∇F = ∂F
∂x1

2
+ ∂F
∂x2

2
+⋯+ ∂F

∂xN

2

To compute the gradient magnitude, the software computes the partial derivative in each dimension
by computing the difference between successive test data in that dimension and dividing by the
spacing between test data in that dimension. If you specify the spacing between test data in each
dimension in indepVar1,...,indepVarN, the software uses the specified spacing. If you do not
specify the spacing, the software assumes the test data is spaced 1 step apart in each dimension. The
software normalizes the final gradient magnitude by the GradientBound property of requirement,
and returns the normalized value in evaluation.

Version History
Introduced in R2016b

 evalRequirement

3-41

See Also
sdo.requirements.SmoothnessConstraint

3 Methods and Apps

3-42

evalRequirement
Class: sdo.requirements.StepResponseEnvelope
Package: sdo.requirements

Evaluate satisfaction of step response requirement

Syntax
evaluation = evalRequirement(requirement,signal)

Description
evaluation = evalRequirement(requirement,signal) evaluates whether signal satisfies
requirement, the step response requirement.

Input Arguments
requirement — Step response requirement
sdo.requirements.StepResponseEnvelope object

Step response requirement, specified as an sdo.requirements.StepResponseEnvelope object.

signal — Signal to be evaluated
timeseries object | matrix | numeric or generalized LTI model

Signal to be evaluated, specified as one of the following:

• timeseries object
• Matrix of size nxm — Where n is the number of time points in the signal and m is the number of

channels in the signal. The first column is time and subsequent columns are signal values.
• Numeric or generalized linear time invariant (LTI) model — Available with Control System

Toolbox™ software.

Output Arguments
evaluation — Evaluation of the step response requirement
column vector

Evaluation of the step response requirement, returned as a column vector. Negative values indicate
that the requirement is satisfied, and positive values indicate that the requirement is violated.
evaluation consists of the maximum distances between signal and step response bounds. The last
entry in evaluation is a stability measure.

The maximum signal distances from upper bounds are returned before lower bounds. The step
bounds are considered in the following order:

 evalRequirement

3-43

• Upper bound for the overshoot — Signal between StepTime (time, t = 0) and SettlingTime of
the requirement is used.

• Upper bound for the settling time — Signal between SettlingTime and 1.5*SettlingTime is
used.

• Additional upper bound for the settling time — If signal extends beyond 1.5*SettlingTime,
there is an additional upper bound for the settling time. Maximum signal distance from this upper
bound is also returned. The signal between 1.5*SettlingTime and end of signal is used.

• Lower bound for the undershoot — Signal between StepTime and RiseTime is used.
• Lower bound for the % rise — Signal between RiseTime and SettlingTimeis used.
• Lower bound for the settling time — Signal between SettlingTime and 1.5*SettlingTime is

used.
• Additional lower bound for the settling time — If signal extends beyond 1.5*SettlingTime,

there is an additional lower bound for the settling time. Maximum signal distance from this lower
bound is also returned. The signal between 1.5*SettlingTime and end of signal is used.

The last value in evaluation is a measure of stability from the end of signal to infinity. Negative
values indicate that the projected signal is not deviating from the step response after end of signal.
A positive value indicates that the projected signal is deviating.

Examples

Evaluate Step Response Requirement

Create a step response requirement.

requirement = sdo.requirements.StepResponseEnvelope;

A requirement is created with the default settling time of 7 seconds.

Specify the signal to be evaluated.

signal = timeseries(1-exp(-(0:10)'));

The signal data extends to 10 seconds.

3 Methods and Apps

3-44

Evaluate the step response requirement.

evaluation = evalRequirement(requirement,signal)

evaluation = 6×1

 -0.0917
 -0.0099
 -1.0000
 -0.2416
 -0.0092
 -0.0299

The maximum distance of the signal from the step response bounds is returned in
evaluation(1:5), followed by the stability value. Negative values indicate that the requirement is
satisfied.

The maximum distance from the bounds are returned in the following order:

1 Distance from upper bound for the overshoot
2 Distance from upper bound for the settling time
3 Distance from lower bound for the undershoot
4 Distance from lower bound for the % rise
5 Distance from lower bound for the settling time

evaluation does not include the distance of the signal from bounds beyond 1.5*settling time
because the signal data does not extend beyond 1.5*settling time.

See Also
get | set | copy | sdo.requirements.StepResponseEnvelope

Topics
“Design Optimization to Meet Step Response Requirements (Code)”

 evalRequirement

3-45

get
Get property values

Syntax
get(req)
get(req,PropertyName)

Description
get(req) returns the value of all properties of the requirement object
(sdo.requirements.StepResponseEnvelope, ...).

get(req,PropertyName) returns value of a specific property. Use a cell array of property names to
return a cell array with multiple property values.

Input Arguments
req

Requirement object (sdo.requirements.StepResponseEnvelope, ...).

PropertyName

Name of the requirement object (sdo.requirements.StepResponseEnvelope, ...) property.

Alternatives
You can access data in properties using dot notation:

object.PropertyName

Version History
Introduced in R2011b

3 Methods and Apps

3-46

set
Set property values

Syntax
set(req,Name,Value,)

Description
set(req,Name,Value,) sets the property value of a requirement object
(sdo.requirements.StepResponseEnvelope, ...). Specify the property name and value using one
or more Name,Value pair arguments.

Input Arguments
req

Requirement object (sdo.requirements.StepResponseEnvelope, ...)

Name,Value

Property name of a requirement object (sdo.requirements.StepResponseEnvelope, ...), and the
corresponding value to set.

Examples
Specify property values.

r = sdo.requirements.SignalBound;
set(r,'BoundTimes',[0 5;5 10], ...
 'BoundMagnitudes',[1.1 1.1; 1.01 1.01]);

Tips
• Use set to simultaneously change properties that you cannot change independently.

Alternatives
You can set data in properties using dot notation: object.PropertyName. However, you cannot
simultaneously set the value of more than one property using dot notation, use set instead.

Version History
Introduced in R2011b

 set

3-47

getbounds
Get bounds specified in Check block

Syntax
bnds = getbounds(blockpath)

Description
bnds = getbounds(blockpath) returns the bounds specified in the Check block specified by
blockpath.

Input Arguments
blockpath

Check block to get bounds from, specified as a full block path inside single quotes (' '). A block path is
of the form model/subsystem/block that uniquely identifies a block in the model. The Simulink model
must be open.

Output Arguments
bnds

Cell array. The number of elements and objects they contain depends on the Check block type.

• Check Step Response Characteristics: Cell array of one element that contains a
sdo.requirements.StepResponseEnvelope object.

• Check Custom Bounds: Cell array of two elements — the first and second elements contain the
following upper and lower bound values, respectively. Both elements are
sdo.requirements.SignalBound objects.

• Check Against Reference: Cell array of one element that contains a
sdo.requirements.SignalTracking object.

Note Programmatically changing the bound values in the object returned does not update them in
the Block Parameters dialog box.

Examples

Get Bounds from Check Block

Retrieve bounds from a Check Step Response Characteristics block.

load_system('sldo_model1_stepblk');
allBlkReq = getbounds('sldo_model1_stepblk/Step Response');

3 Methods and Apps

3-48

Type allBlkReq{1} to view the cell array element.

allBlkReq{1}

ans =
 StepResponseEnvelope with properties:

 InitialValue: 0
 FinalValue: 1
 StepTime: 0
 RiseTime: 5
 PercentRise: 80
 SettlingTime: 7
 PercentSettling: 1.0000
 PercentOvershoot: 10.0000
 PercentUndershoot: 1
 Type: '<='
 Name: ''
 Description: ''
 TimeUnits: 'seconds'

Version History
Introduced in R2011b

See Also
sdo.optimize | Check Against Reference | Check Custom Bounds | Check Step Response
Characteristics

Topics
“Design Optimization to Meet Step Response Requirements (Code)”

 getbounds

3-49

getOvershoot
Class: sdo.requirements.PZDampingRatio
Package: sdo.requirements

Convert damping ratio to equivalent overshoot value

Syntax
overshoot = getOvershoot(req)

Description
overshoot = getOvershoot(req) converts the damping ratio value specified in the
DampingRatio property of an sdo.requirements.PZDampingRatio object to an equivalent
approximate second-order overshoot value.

Input Arguments
req

sdo.requirements.PZDampingRatio object.

Output Arguments
overshoot

Approximate second-order percent overshoot value, equivalent to the damping ratio value in
DampingRatio property of sdo.requirements.PZDampingRatio.

Examples
Convert damping ratio to approximate second-order overshoot value.

r = sdo.requirements.PZDampingRatio;
r.DampingRatio = 0.1;
overshoot = getOvershoot(r);

See Also
sdo.requirements.PZDampingRatio | evalRequirement | setOvershoot

3 Methods and Apps

3-50

setOvershoot
Class: sdo.requirements.PZDampingRatio
Package: sdo.requirements

Set overshoot to an equivalent damping ratio

Syntax
req1 = setOvershoot(req,percent_overshoot)

Description
req1 = setOvershoot(req,percent_overshoot) sets the damping ratio value to a value
equivalent to percent overshoot.

Input Arguments
req

sdo.requirements.PZDampingRatio object.

percent_overshoot

Percent overshoot value to compute damping ratio.

Output Arguments
req1

sdo.requirements.PZDampingRatio object whose DampingRatio property is the damping ratio
value equivalent to percent_overshoot.

Examples
Specify overshoot bound.

 req = sdo.requirements.PZDampingRatio
 setOvershoot(req,20)

See Also
sdo.requirements.PZDampingRatio | evalRequirement | getOvershoot

 setOvershoot

3-51

makedist
Create probability distribution object

Syntax
pd = makedist(distname)
pd = makedist(distname,Name,Value)
list = makedist

Description
pd = makedist(distname) creates a probability distribution object for the distribution distname,
using the default parameter values.

Use makedist to specify uniform, normal, multinomial, piecewise linear, or triangular distribution
objects. If you have Statistics and Machine Learning Toolbox software, you can use makedist to
create objects for other distributions, such as the Gamma or Weibull distributions. For more
information, see makedist.

To truncate the probability distribution to a specified interval, use truncate.

pd = makedist(distname,Name,Value) creates a probability distribution object with one or
more distribution parameter values specified by name-value pair arguments.

list = makedist returns a cell array list containing a list of the probability distributions that
makedist can create.

Examples

Create Normal Distribution Object

Create a normal distribution object using default parameter values.

pd = makedist('Normal')

pd =
 NormalDistribution

 Normal distribution
 mu = 0
 sigma = 1

Specify Parameters for a Normal Distribution Object

Create a normal distribution object with a mean value of mu = 75, and a standard deviation of sigma
= 10.

3 Methods and Apps

3-52

pd = makedist('Normal','mu',75,'sigma',10);

Specify Piecewise Linear Distribution Object

Create a piecewise linear distribution object for a distribution with values from 6 to 10, where values
from 6 to 8 are four times more likely than values from 8 to 10.

pd = makedist('PieceWiselinear','x',[6 8 10],'Fx',[0 0.8 1]);

You specify the cumulative distribution function Fx as [0 0.8 1] because the difference between 0.8
and 0 is four times the difference between 1 and 0.8. As a result, the generated distribution has four
times more values between 6 to 8 than between 8 to 10.

The plot shows the specified cumulative distribution function (CDF) and the corresponding
probability distribution function (PDF).

The piecewise linear CDF corresponds to a piecewise constant PDF.

Input Arguments
distname — Distribution name
'Uniform' | 'Normal' | 'Multinomial' | 'PiecewiseLinear' | 'Triangular'

 makedist

3-53

Distribution name, specified as one of the following values:

Distribution Name Description
'Uniform' Uniform distribution — You specify the lower and

upper bounds of the distribution.
'Normal' Normal distribution — You specify the mean and

standard deviation of the distribution.
'Multinomial' Multinomial distribution — In a multinomial

distribution, the outcome is one of 1, 2, ..., k. You
specify the probability of each outcome, [p1,p2,...,
pk]. The probabilities should sum to 1.

'PiecewiseLinear' Piecewise Linear distribution — Use this
distribution to make a custom distribution by
specifying a piecewise linear cumulative
distribution function (CDF). You specify the
vector of values, x, at which the CDF changes
slope and the corresponding vector of CDF
values, Fx. The Fx value at any x is the
probability of getting a value less than or equal to
x. A piecewise linear CDF is created by linearly
connecting the known CDF values, Fx. This
piecewise linear CDF corresponds to a piecewise
constant probability distribution function.

For an example, see “Specify Piecewise Linear
Distribution Object” on page 3-53.

'Triangular' Triangular distribution — You specify the lower
limit, peak location, and upper limit of the
distribution.

For information about these distributions, see the “Probability Distributions” (Statistics and Machine
Learning Toolbox) category.

Note If you have Statistics and Machine Learning Toolbox software, you can use makedist to create
objects for other distributions, such as the Gamma or Weibull distributions. For more information, see
makedist.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: makedist('Normal','mu',10) specifies a normal distribution with parameter mu equal
to 10, and parameter sigma equal to the default value of 1.

3 Methods and Apps

3-54

Multinomial Distribution

Probabilities — Outcome probabilities
[0.500 0.500] (default) | vector of scalar values in the range [0,1]

Outcome probabilities for a multinomial distribution, specified as a vector of scalar values in the
range [0,1]. The probabilities sum to 1 and correspond to outcomes [1, 2, ..., k], where k is the
number of elements in the probabilities vector. This argument is valid only when distname is
'Multinomial'.
Example: 'Probabilities',[0.1 0.2 0.5 0.2] gives the probabilities that the outcome is 1, 2,
3, or 4, respectively.
Data Types: single | double

Normal Distribution

mu — Mean
0 (default) | scalar value

Mean of a normal distribution, specified as a scalar value. This argument is valid only when
distname is 'Normal'.
Example: 'mu',2
Data Types: single | double

sigma — Standard deviation
1 (default) | nonnegative scalar value

Standard deviation of a normal distribution, specified as a nonnegative scalar value. This argument is
valid only when distname is 'Normal'.
Example: 'sigma',2
Data Types: single | double

Piecewise Linear Distribution

x — Data values
1 (default) | monotonically increasing vector of scalar values

Data values at which the cumulative distribution function (cdf) changes slope for a piecewise linear
distribution, specified as a monotonically increasing vector of scalar values. This argument is valid
only when distname is 'PiecewiseLinear'.
Example: 'x',[1 2 3]
Data Types: single | double

Fx — cdf value at each value in x
1 (default) | monotonically increasing vector of scalar values that start at 0 and end at 1

cdf value at each value in x for a piecewise linear distribution, specified as a monotonically increasing
vector of scalar values that start at 0 and end at 1. This argument is valid only when distname is
'PiecewiseLinear'.
Example: 'Fx',[0.2 0.5 1]
Data Types: single | double

 makedist

3-55

Triangular Distribution

A — Lower limit
0 (default) | scalar value

Lower limit for a triangular distribution, specified as a scalar value. This argument is valid only when
distname is 'Triangular'.
Example: 'A',-2
Data Types: single | double

B — Peak location
0.5 (default) | scalar value greater than or equal to A

Peak location for a triangular distribution, specified as a scalar value greater than or equal to A. This
argument is valid only when distname is 'Triangular'.
Example: 'B',1
Data Types: single | double

C — Upper limit
1 (default) | scalar value greater than or equal to B

Upper limit for a triangular distribution, specified as a scalar value greater than or equal to B. This
argument is valid only when distname is 'Triangular'.
Example: 'C',5
Data Types: single | double

Uniform Distribution

Lower — Lower limit
0 (default) | scalar value

Lower limit for a uniform distribution, specified as a scalar value. This argument is valid only when
distname is 'Uniform'.
Example: 'Lower',-4
Data Types: single | double

Upper — Upper limit
1 (default) | scalar value greater than Lower

Upper limit for a uniform distribution, specified as a scalar value greater than Lower. This argument
is valid only when distname is 'Uniform'.
Example: 'Upper',2
Data Types: single | double

Output Arguments
pd — Probability distribution
probability distribution object

3 Methods and Apps

3-56

Probability distribution, returned as a probability distribution object of the type specified by
distname.

list — List of probability distributions
cell array of character vectors

List of probability distributions that makedist can create, returned as a cell array of character
vectors.

Version History
Introduced in R2014a

See Also
sdo.ParameterSpace | truncate

 makedist

3-57

sdo.analyze
Analyze how model parameters influence cost function

Syntax
r = sdo.analyze(x,y)
r = sdo.analyze(x,y,opts)

Description
r = sdo.analyze(x,y) returns an Np-by-Nc table containing the pairwise linear correlation
coefficients between each pair of columns in the x and y tables. x contains Ns samples of Np model
parameters. y contains Ns rows, each row corresponds to the cost function evaluation for a sample in
x. Each column in y corresponds to a cost or constraint.

r = sdo.analyze(x,y,opts) specifies the analysis method(s) and method options using opts, an
sdo.AnalyzeOptions object. If you specify multiple analysis methods, r is returned as a structure
with fields for the results of each specified analysis method and method option combination.

Examples

Analyze Influence of Model Parameters on Cost Function

Create arbitrary param.Continuous objects.

p1 = param.Continuous('x1',1);
p2 = param.Continuous('x2',1500);
p = [p1;p2];

Specify the parameter space definition for the parameters.

ps = sdo.ParameterSpace(p);

Sample the parameters.

x = sdo.sample(ps,50);

Evaluate the cost function for the samples.

y = sdo.evaluate(@(p) sdoExampleCostFunction(p),ps,x);

Model evaluated at 50 samples.

Obtain the pairwise linear correlation coefficients for the parameters and the cost function.

r = sdo.analyze(x,y);

3 Methods and Apps

3-58

Specify Analysis Method

Create arbitrary param.Continuous objects.

p1 = param.Continuous('x1',1);
p2 = param.Continuous('x2',1500);
p = [p1;p2];

Specify the parameter space definition for the parameters.

ps = sdo.ParameterSpace(p);

Sample the parameters.

x = sdo.sample(ps,50);

Evaluate the cost function for the samples.

y = sdo.evaluate(@(p) sdoExampleCostFunction(p),ps,x);

Model evaluated at 50 samples.

Create an options object to use Correlation Method.

opt = sdo.AnalyzeOptions;
opt.Method = 'Correlation';

Obtain the pairwise linear correlation coefficients for the parameters and the cost function.

r = sdo.analyze(x,y,opt)

r=2×3 table
 F Cleq leq
 ________ _______ ________

 x1 0.9997 -0.9997 1
 x2 -0.35144 0.35324 -0.35244

r is a structure with table fields, with one table for each type of analysis specified by opt.

Input Arguments
x — Model parameter samples
table

Model parameter samples, specified as an Ns-by-Np table.

Ns is the number of samples, and Np is the number of model parameters.

Generally, you use sdo.sample to generate x.

y — Cost function evaluations
table

Cost function and constraint evaluations for each sample in x, specified as an Ns-by-Nc table.

 sdo.analyze

3-59

Ns is the number of samples, and Nc is the number of cost and constraints returned by the cost
function.

Generally, you use sdo.evaluate to generate y.

opts — Analysis options
sdo.AnalyzeOptions object

Analysis options, specified as an sdo.AnalyzeOptions object.

Output Arguments
r — Analysis results
table | structure

Analysis results, returned as a table (when you specify a single analysis method) or a structure with
table fields (when you specify multiple analysis methods).

Each table returned by r is an Np-by-Nc table. Np is the number of parameters, and Nc is the number
of cost and constraints returned by the cost function.

Version History
Introduced in R2014a

See Also
sdo.AnalyzeOptions | sdo.evaluate

Topics
“Identify Key Parameters for Estimation (Code)”
“Analyze Relation Between Parameters and Design Requirements”

3 Methods and Apps

3-60

sdo.evaluate
Evaluate cost function for samples

Syntax
[y,info] = sdo.evaluate(fcn,params)
[y,info] = sdo.evaluate(fcn,params,param_samples)
[y,info] = sdo.evaluate(___ ,opts)

Description
[y,info] = sdo.evaluate(fcn,params) evaluates the cost function, fcn, for samples of the
parameter space specified by params (sdo.ParameterSpace object). The software generates a
table of samples with 2Np+1 rows and Np columns. These samples are generated based on the
parameter space specifications in params, per its ParameterDistributions, RankCorrelation,
and Options properties. Np is the number of parameters specified in params. fcn takes sample
values and computes model goal values. A model goal could be a cost (objective), constraint, or
assessment of difference between experimental data and model simulation. sdo.evaluate applies
fcn to each row of the table of samples. y is a table with one column for each model goal output
returned by fcn and 2Np+1 rows. Additional evaluation information is returned in info.

[y,info] = sdo.evaluate(fcn,params,param_samples) evaluates the cost function for the
specified parameter samples table, param_samples. For this syntax, you can specify params as an
sdo.ParameterSpace object or a vector of param.Continuous objects. y is a table with one
column for each model goal (cost or constraint) output returned by fcn. y contains as many rows as
param_samples.

[y,info] = sdo.evaluate(___ ,opts) specifies evaluation options that configure the evaluation
error handling, display, and parallel computing options. This syntax can include any of the input
argument combinations in the previous syntaxes.

Examples

Evaluate Cost Function Value for Parameter Samples

Create an arbitrary param.Continuous object.

p = param.Continuous('x',1);

Specify the parameter space definition for the model parameter.

ps = sdo.ParameterSpace(p);

Evaluate the cost function.

[y,info] = sdo.evaluate(@(p) sdoExampleCostFunction(p),ps);

Model evaluated at 3 samples.

 sdo.evaluate

3-61

The software generates three samples (2Np + 1), and evaluates the sdoExampleCostFunction cost
function for each sample. Np is the number of parameters (= 1).

Input Arguments
fcn — Function to be evaluated by sdo.evaluate
function handle

Cost function to be evaluated by sdo.evaluate, specified as a function handle.

The function requires:

• One input argument, which is a vector of param.Continuous object.

To pass additional input arguments, use an anonymous function. For example, new_fcn = @(p)
fcn(p,arg1,arg2, ...).

• One output argument, which is a structure with one or more of the following fields:

• F — Value of the cost (objective) evaluated at p. F is a 1x1 double.
• Cleq — Value of the nonlinear inequality constraint violations evaluated at p.

Cleq is a double mx1 vector, where m is the number of nonlinear inequality constraints.
• Ceq — Value of the nonlinear equality constraint violations evaluated at p.

The value is a double rx1 vector, where r is the number of nonlinear equality constraints.
• leq — Value of the linear inequality constraint violations evaluated at p.

leq is a double nx1 vector, where n is the number of linear inequality constraints.
• eq — Value of the linear equality constraint violations evaluated at p.

eq is a double sx1 vector or [], where s is the number of linear equality constraints.
• Log — Additional optional information from function evaluation. If specified, this is returned in

the Log field of output info.

Note You can use the same function handle fcn for sensitivity analysis, response optimization, or
parameter estimation. For optimization and estimation, the solver seeks values of p that minimize
F while satisfying constraints Cleq, Ceq, leq and eq. For more information, see sdo.optimize
and “Write a Cost Function”.

params — Model parameters and states
sdo.ParameterSpace object | vector of param.Continuous objects

Model parameters and states, specified as an sdo.ParameterSpace object or a vector of
param.Continuous objects. If you specify params as a vector of param.Continuous objects, you
must also specify param_samples.

param_samples — Parameter samples
table

Parameter samples, specified as a table. param_samples contains columns that correspond to free
scalar parameters and rows that are samples of these parameters. Free scalar parameters refers to

3 Methods and Apps

3-62

all the parameters specified by params whose Free property is set to 1. Specifying this property
value as 1 indicates that the software can vary the value of this parameter for each evaluation.

Each column name must be equal to the name of the corresponding scalar parameter.

opts — Evaluation options
sdo.EvaluateOptions object

Evaluation options, specified as an sdo.EvaluateOptions object.

Output Arguments
y — Cost function evaluation
table

Cost function and constraint evaluations, returned as a table.

y is a table with one column for each cost or constraint output returned by fcn, and Ns rows.

If you specify param_samples, Ns is equal to the number of rows of param_samples. Otherwise, Ns
is equal to 2Np+1. Np is the number of parameters specified in params.

info — Evaluation information
structure

Evaluation information, returned as a structure with the following fields:

• Status — Evaluation status for each sample, returned as a cell array of character vectors.

Each entry of the cell array is one of the following character vectors:

• 'success' — Model evaluation was successful
• 'failure' — Model evaluation resulted in all NaN results
• 'error' — Model evaluation resulted in an error

• Log — Additional evaluation information retrieved from the Log field of the cost function, fcn.
• Stats — Time to evaluate all samples, returned as a structure with the following fields:

• StartTime — Evaluation start time, returned as a six-element date vector containing the
current date and time in decimal form: [year month day hour minute seconds]

• EndTime — Evaluation end time, returned as a six-element date vector containing the current
date and time in decimal form: [year month day hour minute seconds]

To determine the total evaluation time, use
etime(info.Stats.EndTime,info.Stats.StartTime).

Version History
Introduced in R2014a

 sdo.evaluate

3-63

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true using sdo.EvaluateOptions.

For more information, see “Use Parallel Computing for Sensitivity Analysis”.

See Also
sdo.EvaluateOptions | sdo.optimize | sdo.sample | sdo.analyze | sdo.ParameterSpace

Topics
“Design Exploration Using Parameter Sampling (Code)”
“Identify Key Parameters for Estimation (Code)”
“Write a Cost Function”
“Create Function Handle”

3 Methods and Apps

3-64

createSimulator
Create simulation object from experiment to compare measured and simulated data

Syntax
sim_obj = createSimulator(experiment)
sim_obj = createSimulator(experiment,sim_obj0)

Description
sim_obj = createSimulator(experiment) creates a sdo.SimulationTest object to simulate
a model using the parameters and inputs specified in an experiment. You compare the simulated and
measured outputs. sim_obj specifies the model stop time as the end time of the longest running
experiment output signal.

sim_obj = createSimulator(experiment,sim_obj0) updates the values of the Parameters,
InitialStates, Input and LoggingInfo properties of the sdo.SimulationTest object,
sim_obj0. It does so using the corresponding properties specified by experiment.
sim_obj0.ModelName must be the same as experiment.ModelName. You use this syntax to avoid
creating a simulation scenario object (sdo.SimulationTest object) repeatedly and, instead, modify
an existing simulation scenario object.

Input Arguments
experiment

Experiment, specified as an sdo.Experiment object.

sim_obj0

Simulation scenario, specified as an sdo.SimulationTest object.

Typically, you use the createSimulator method of an experiment to create sim_obj0, which
returns an appropriately configured simulation scenario. You can construct sim_obj0 using the
syntax sim_obj0 = sdo.SimulationTest(modelname). However, if you do so, then
sim_obj0.ModelName must be the same as experiment.ModelName.

Output Arguments
sim_obj

Simulation scenario, returned as an sdo.SimulationTest object.

The properties of sim_obj are configured to simulate the model associated with experiment using
the parameters, initial states and inputs defined by experiment.

When you use the syntax sim_obj = createSimulator(experiment,sim_obj0), sim_obj is
the same object as sim_obj0. However, it contains the Parameters, InitialStates, and Input
property values of experiment. The LoggingInfo property of sim_obj is extended to include any
additional signals from experiment.OutputData.

 createSimulator

3-65

Examples

Create Simulation Scenario from Experiment

Specify an experiment.

experiment = sdo.Experiment('sdoRCCircuit');

Create a simulation scenario for the experiment.

sim_obj = createSimulator(experiment);

Update Simulation Scenario for Experiment

Specify an experiment and a model parameter value for the experiment.

load_system('sdoRCCircuit');
p = sdo.getParameterFromModel('sdoRCCircuit','C1');
p.Value = 1e-6;
p.Free = false;
experiment = sdo.Experiment('sdoRCCircuit');
experiment.Parameters = p;

Create a simulation scenario for the experiment.

sim_obj = createSimulator(experiment);
sim_obj.Parameters.Value

ans = 1.0000e-06

Modify the model parameter value for the experiment.

experiment.Parameters.Value = 2e-6;

Update the simulation scenario.

sim_obj = createSimulator(experiment,sim_obj);
sim_obj.Parameters.Value

ans = 2.0000e-06

The value of the model parameter associated with sim_obj is updated.

See Also
sdo.SimulationTest

Topics
“Estimate Model Parameter Values (Code)”
“Estimate Model Parameters and Initial States (Code)”

3 Methods and Apps

3-66

getValuesToEstimate
Get model initial states and parameters for estimation from experiment

Syntax
parameters = getValuesToEstimate(experiment)

Description
parameters = getValuesToEstimate(experiment) returns the model initial states and
parameters of an experiment that you want to estimate.

When you estimate parameters for multiple experiments, getValuesToEstimate tags each
parameter to track its corresponding experiment. To update the experiments with their
corresponding estimated parameter values, use setEstimatedValues.

Input Arguments
experiment

Experiment, specified as an sdo.Experiment object.

To get the model initial states and parameters for multiple experiments, use a vector of
sdo.Experiment objects.

To specify that you want to estimate the value of a model initial state or parameter for an experiment,
set its Free property to true. For example, experiment.InitialStates(1).Free = true.

Output Arguments
parameters

Model initial states and parameters of an experiment that you want to estimate, returned as a vector
of param.Continuous objects.

When experiment specifies multiple experiments, getValuesToEstimate tags each entry of
parameters to track its corresponding experiment. To update the experiments with their
corresponding estimated parameter values, use setEstimatedValues.

Examples

Get Model Initial States and Parameters to Estimate from Experiment

Specify an experiment with a model initial state and parameter that you want to estimate.

load_system('sdoRCCircuit');
experiment = sdo.Experiment('sdoRCCircuit');
experiment.InitialStates = sdo.getStateFromModel('sdoRCCircuit','C1');
experiment.Parameters = sdo.getParameterFromModel('sdoRCCircuit','C1');

 getValuesToEstimate

3-67

Get the model initial states and parameters that you want to estimate from the experiment.

val = getValuesToEstimate(experiment)

val(1,1) =

 Name: 'sdoRCCircuit/C1:sdoRCCircuit.C1.vc'
 Value: 0
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 1
 dxValue: 0
 dxFree: 1
 Info: [1x1 struct]

val(2,1) =

 Name: 'C1'
 Value: 1.0000e-03
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 0.0020
 Info: [1x1 struct]

2x1 param.Continuous

val(1,1), the initial voltage of the model capacitor block, C1, is the initial state specified by
experiment for estimation. Execute class(val(1,1)) to see that val(1,1) is a param.State
object, representing a model initial state.

val(1,2), the capacitance of the C1 block, is the model parameter specified by experiment for
estimation.

See Also
sdo.Experiment | setEstimatedValues

Topics
“Estimate Model Parameters Using Multiple Experiments (Code)”
“Estimate Model Parameters Per Experiment (Code)”

3 Methods and Apps

3-68

prepareToDeploy
Configure experiment for deployment with Simulink Compiler

Syntax
Experiment_out = prepareToDeploy(Experiment)

Description
Experiment_out = prepareToDeploy(Experiment) configures an experiment that defines the
input and output data for the Simulink model specified as the sdo.Experiment object Experiment
for deployment with Simulink Compiler™.

prepareToDeploy saves the initial state and input data in Experiment_out so that the
sdo.Experiment object does not need to perform model error checking or configuration when
deployed as part of an executable.

Input Arguments
Experiment — Input and output data of Simulink model
sdo.Experiment object (default)

Input and output data of Simulink model, specified as an sdo.Experiment object.

Output Arguments
Experiment_out — Experiment configured for deployment with Simulink Compiler
sdo.Experiment object (default)

Experiment configured for deployment with Simulink Compiler, returned as an sdo.Experiment
object.

Examples

Set Up Experiment and Simulation Test Objects for Deployment

For this example, set up your parameter estimation problem using the Parameter Estimator app
and generate MATLAB code from it. For more information on generating MATLAB code from the app,
see “Generate MATLAB Code for Parameter Estimation Problems (GUI)”. Alternatively, you can also
set up your estimation problem at the command line.

Next, split the generated MATLAB code just before the estimation objective function is defined. This
results in two files − a run function and a setup function, as described in “Parameter Tuning for
Digital Twins”.

In the setup function, add the following lines of code at the end to configure the experiment and
simulation test objects for deployment and save them to a MAT-file.

 prepareToDeploy

3-69

Experiment_out = prepareToDeploy(Experiement);
Simulator = createSimulator(Experiment_out);
Simulator = prepareToDeploy(Simulator,p);
save ObjectsToDeploy Experiment_out Simulator p

In the run function, add the following lines of code at the beginning of the function to include the
Simulink model in the compiled code and load the objects that were saved in the setup function.

%#function simulink_model_name.slx
load ObjectsToDeploy Experiment_out Simulator p

Next, add the following lines to load the experiment data and update the experiment object. For this
example, assume that the experiment data is contained in the first three columns of a Microsoft Excel
spreadsheet file named fname.xls.

d = xlsread(fname);
u = timeseries(d(:,3),d(:,1));
y = timeseries(d(:,2),d(:,1));
Experiment_out = updateIOData(Experiment_out,'simulink_model_name/param1',u);
Experiment_out = updateIOData(Experiment_out,'simulink_model_name/param2',y);

For a detailed example showing how to deploy your parameter estimation problem using the Simulink
Compiler, see “Parameter Tuning for Digital Twins”.

Version History
Introduced in R2020a

See Also
updateIOData | sdo.Experiment

Topics
“Parameter Tuning for Digital Twins”

3 Methods and Apps

3-70

setEstimatedValues
Update experiments with estimated model initial states and parameter values

Syntax
experiment = setEstimatedValues(experiment0,parameters)

Description
experiment = setEstimatedValues(experiment0,parameters) updates the experiment with
the estimated model initial states and parameter values.

setEstimatedValues is used with the getValuesToEstimate method. You use
getValuesToEstimate to obtain the parameters that you want to estimate from an experiment.
When you estimate parameters for multiple experiments, getValuesToEstimate tags each
parameter to track its corresponding experiment. You use setEstimatedValues to update the
experiments with their corresponding estimated parameter values.

Input Arguments
experiment0

Experiment, specified as an sdo.Experiment object.

To specify multiple experiments, use a vector of sdo.Experiment objects.

parameters

Estimated model initial states and parameters for experiments, specified as a vector of
param.Continuous objects.

You obtain estimated parameters using sdo.optimize.

Output Arguments
experiment

Updated experiment, returned as an sdo.Experiment object.

If experiment0 is a vector of experiments, then experiment is a corresponding vector of updated
sdo.Experiment objects.

setEstimatedValues updates the values of the parameters and initial states specified in each of
the experiments in experiment0 using the corresponding entry in parameters.

Examples

 setEstimatedValues

3-71

Update Experiment with Estimated Parameter Value

Specify an experiment.

experiment = sdo.Experiment('sdoRCCircuit');

Typically, you also specify measured input/output data for the experiment.

Specify a model parameter for estimation.

load_system('sdoRCCircuit');
C1_parameter = sdo.getParameterFromModel('sdoRCCircuit','C1');
C1_parameter.Value = 460e-6;
experiment.Parameters = C1_parameter;

C1_parameter is the capacitance parameter of the C1 block. The initial guess for its value is 460 μ F.

Estimate the parameter value.

Typically, you use sdo.optimize to get the estimated parameter values for an experiment. For this
example, directly change the value of the capacitance parameter.

C1_parameter.Value = 1e-6;

Update the experiment with the estimated parameter.

experiment = setEstimatedValues(experiment,C1_parameter);

Use experiment.Parameters.Value to verify that the capacitance parameter's value is updated.

See Also
getValuesToEstimate

Topics
“Estimate Model Parameters Using Multiple Experiments (Code)”
“Estimate Model Parameters Per Experiment (Code)”

3 Methods and Apps

3-72

updateIOData
Update experiment input and output data

Syntax
Experiment_out = updateIOData(Experiment,sigName,data)
Experiment_out = updateIOData(Experiment,sigName1,data1,sigName2,data2,...)

Description
Experiment_out = updateIOData(Experiment,sigName,data) updates the signal sigName
of the experiment object Experiment with data specified in data.

updateIOData lets you reuse the experiment definition but with different data. The function is
particularly useful for deployed applications where you do not want to redefine the experiment each
time you execute the deployed application.

Experiment_out = updateIOData(Experiment,sigName1,data1,sigName2,data2,...)
updates multiple signals of an experiment object for deployment with Simulink Compiler.

Input Arguments
Experiment — Experiment definition for Simulink model
sdo.Experiment object (default)

Experiment definition for Simulink model, specified as an sdo.Experiment object.

sigName — Signal to be updated
string

Signal to be updated, specified as a string. You can specify sigName using the full signal block path
or by the signal name if the signal names in the Simulink model are unique.

You can specify multiple sigName and data pairs to update multiple inputs or outputs in one call to
updateIOData.

data — Data for signal update
time series | vector

Data for the signal update, specified as a time series or vector.

You can specify multiple sigName and data pairs to update multiple inputs or outputs in one call to
updateIOData.

Output Arguments
Experiment_out — Experiment with updated input and output data
sdo.Experiment object

Experiment with updated input and output data, returned as an sdo.Experiment object.

 updateIOData

3-73

Examples

Set Up Experiment and Simulation Test Objects for Deployment

For this example, set up your parameter estimation problem using the Parameter Estimator app
and generate MATLAB code from it. For more information on generating MATLAB code from the app,
see “Generate MATLAB Code for Parameter Estimation Problems (GUI)”. Alternatively, you can also
set up your estimation problem at the command line.

Next, split the generated MATLAB code just before the estimation objective function is defined. This
results in two files − a run function and a setup function, as described in “Parameter Tuning for
Digital Twins”.

In the setup function, add the following lines of code at the end to configure the experiment and
simulation test objects for deployment and save them to a MAT-file.

Experiment_out = prepareToDeploy(Experiement);
Simulator = createSimulator(Experiment_out);
Simulator = prepareToDeploy(Simulator,p);
save ObjectsToDeploy Experiment_out Simulator p

In the run function, add the following lines of code at the beginning of the function to include the
Simulink model in the compiled code and load the objects that were saved in the setup function.

%#function simulink_model_name.slx
load ObjectsToDeploy Experiment_out Simulator p

Next, add the following lines to load the experiment data and update the experiment object. For this
example, assume that the experiment data is contained in the first three columns of a Microsoft Excel
spreadsheet file named fname.xls.

d = xlsread(fname);
u = timeseries(d(:,3),d(:,1));
y = timeseries(d(:,2),d(:,1));
Experiment_out = updateIOData(Experiment_out,'simulink_model_name/param1',u);
Experiment_out = updateIOData(Experiment_out,'simulink_model_name/param2',y);

For a detailed example showing how to deploy your parameter estimation problem using the Simulink
Compiler, see “Parameter Tuning for Digital Twins”.

Version History
Introduced in R2020a

See Also
sdo.Experiment | prepareToDeploy

Topics
“Parameter Tuning for Digital Twins”

3 Methods and Apps

3-74

sdo.getModelDependencies
Package: sdo

List of model file and path dependencies

Syntax
[dirs,files] = sdo.getModelDependencies(modelname)

Description
[dirs,files] = sdo.getModelDependencies(modelname) returns dependencies of a Simulink
model. The dependencies are required for parallel computing of parameter estimation, response
optimization, or sensitivity analysis tasks. The model must be open for the dependency analysis.

sdo.getModelDependencies may not return a complete list of model dependencies; some
dependencies are undetectable. To learn more, see “Dependency Analyzer Scope and Limitations”. If
your model has dependencies that are undetected or inaccessible by the parallel pool workers, then
add them to the list of model dependencies.

Input Arguments
modelname

Simulink model name, specified as a character vector or string. For example, 'sldo_model1'.

Output Arguments
dirs

Cell array of paths that contain model dependencies.

The cell array is empty when the model does not have any dependencies or
sdo.getModelDependencies does not detect any dependencies.

files

Cell array of files that are model dependencies.

The cell array is empty when the model does not have any dependencies or
sdo.getModelDependencies does not detect any dependencies.

Examples

List Model Dependencies Required for Parallel Computing

Copy Simulink model and boiler library to temporary folder.

pathToLib = boilerpressure_setup;

 sdo.getModelDependencies

3-75

Add folder to search path and open model.

origPath = addpath(pathToLib);
boilerpressure_demo

Get model dependencies.

[dirs, files] = sdo.getModelDependencies('boilerpressure_demo');

The paths listed in dirs are the paths to all the file dependencies listed in files.

Enable parallel computing and add model dependencies.

opts = sdo.OptimizeOptions;
opts.UseParallel = true;
opts.ParallelFileDependencies = files;

Add Additional Files to Model File Dependency List

Copy Simulink model and boiler library to temporary folder.

pathToLib = boilerpressure_setup;

Add folder to search path and open model.

origPath = addpath(pathToLib);
boilerpressure_demo

Get model dependencies.

[dirs, files] = sdo.getModelDependencies('boilerpressure_demo');

Append an additional file, filename.m located in 'C:\matlab\work\'

files = vertcat(files,'C:\matlab\work\filename.m');

Enable parallel computing and add model dependencies.

opts = sdo.OptimizeOptions;
opts.UseParallel = true;
opts.ParallelFileDependencies = files;

Make Local Paths Accessible to Remote Workers

Using file dependencies is recommended, however, in some cases it can be better to choose path
dependencies. For example, if parallel computing is set up on a local multi-core computer, using path
dependencies is preferred as using file dependencies creates multiple copies of the dependency files
on the local computer. This example shows how to use path dependencies for setting up parallel
computing.

Copy Simulink model and boiler library to temporary folder.

pathToLib = boilerpressure_setup;

Add folder to search path and open model.

3 Methods and Apps

3-76

origPath = addpath(pathToLib);
boilerpressure_demo

Get model dependencies.

[dirs, files] = sdo.getModelDependencies('boilerpressure_demo');

Add undetected path dependencies.

dirs = vertcat(dirs,'//hostname/C$/matlab/work');

Replace C:/ with valid network path accessible to remote workers.

dirs = regexprep(dirs,'C:/','////hostname//C$//');

Enable parallel computing and add model dependencies.

opts = sdo.OptimizeOptions;
opts.UseParallel = true;
opts.ParallelPathDependencies = dirs;

Tips
• files lists the model dependencies, and dirs lists the corresponding paths to these

dependencies.

The model dependencies are required during parallel computing and are made accessible to the
parallel pool workers by specifying one of the following:

• File dependencies: the model dependency files are copied to the parallel pool workers.

Use files to set the ParallelFileDependencies property of sdo.OptimizeOptions to
use for parallel computing.

• Path dependencies: the paths to the model dependencies are specified to the parallel pool
workers.

Use dirs to set the ParallelPathDependencies property of sdo.OptimizeOptions to
use for parallel computing.

• Modify files and dirs to include dependencies that sdo.getModelDependencies cannot
detect.

• Using file dependencies is recommended, however, in some cases it can be better to choose path
dependencies. For example, if parallel computing is set up on a local multi-core computer, using
path dependencies is preferred as using file dependencies creates multiple copies of the
dependency files on the local computer.

Alternatives
• “Use Parallel Computing for Parameter Estimation”
• “Use Parallel Computing for Response Optimization”
• “Use Parallel Computing for Sensitivity Analysis”

 sdo.getModelDependencies

3-77

Version History
Introduced in R2011b

See Also
sdo.optimize | sdo.OptimizeOptions | sdo.evaluate | sdo.EvaluateOptions

Topics
“Improving Optimization Performance Using Parallel Computing”
“Speed Up Response Optimization Using Parallel Computing”
“Speed Up Parameter Estimation Using Parallel Computing”
“Analyze Model Dependencies”

3 Methods and Apps

3-78

sdo.getParameterFromModel
Get design variables for optimization

Syntax
DesignVars = sdo.getParameterFromModel(modelname)
DesignVars = sdo.getParameterFromModel(modelname,continParams)
DesignVars = sdo.getParameterFromModel(modelname,continParams,discreteParams)

Description
DesignVars = sdo.getParameterFromModel(modelname) creates model parameter objects for
the parameters in an open Simulink model. You can tune the parameters to satisfy design
requirements or compute parameter estimates using sdo.optimize. All parameters are
continuously variable, represented by param.Continuous objects.

DesignVars = sdo.getParameterFromModel(modelname,continParams) creates
continuously tunable parameter objects for a specified subset of model parameters listed in
continParams.

DesignVars = sdo.getParameterFromModel(modelname,continParams,discreteParams)
creates discrete-valued tunable parameter objects for the model parameters listed in
discreteParams. If you want to specify discrete parameters only, set continParams = []. Use
discreteParams = "*" to designate all model parameters (or all parameters not listed in
continParams) as discrete. Discrete parameters are represented by param.Discrete parameter
objects. Note that to optimize discrete parameters, you must set the optimization method of
sdo.optimize to surrogateopt (see sdo.OptimizeOptions).

Examples

Get All Model Parameters as Continuous Design Variables for Optimization

Load a Simulink model.

load_system("sldo_model1_stepblk")

If you do not specify any model parameters, sdo.getParameterFromModel finds all the tunable
parameters in the model and treats them as continuous parameters.

DesignVars = sdo.getParameterFromModel("sldo_model1_stepblk");
DesignVars

DesignVars(1,1) =

 Name: 'Kd'
 Value: 0
 Minimum: -Inf
 Maximum: Inf
 Free: 1

 sdo.getParameterFromModel

3-79

 Scale: 1
 Info: [1x1 struct]

DesignVars(2,1) =

 Name: 'Ki'
 Value: 0
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 1
 Info: [1x1 struct]

DesignVars(3,1) =

 Name: 'Kp'
 Value: 1
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 1
 Info: [1x1 struct]

DesignVars(4,1) =

 Name: 'w0'
 Value: 0.5000
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 0.5000
 Info: [1x1 struct]

DesignVars(5,1) =

 Name: 'zeta'
 Value: 0.5000
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 0.5000
 Info: [1x1 struct]

5x1 param.Continuous

Thus, for this model, which has tunable parameters Kd, Ki, Kp, w0, and zeta, the output
DesignVars is an array of five param.Continuous objects. To prepare the parameters for
optimization, you can set the initial value, minimum and maximum values, and free elements of each
parameter as needed. For instance, set the minimum value of Kd to 0.001, the maximum value to 100,
and the initial value to 1.

3 Methods and Apps

3-80

DesignVars(1).Minimum = 1e-3;
DesginVars(1).Maximum = 100;
DesignVars(1).Value = 1;

Get Specified Model Parameters as Continuous or Discrete Design Variables

Instead of designating all tunable model parameters as design variables for optimization, you can
specify a subset of variables. Load a Simulink model that has five tunable parameters: Kp, Ki, Kd, w0,
and zeta. Configure Kp, Ki, and Kd as continuous design variables.

mdl = "sldo_model1_stepblk";
open_system(mdl)

continParams = ["Ki","Kp","Kd"];
DesignVars = sdo.getParameterFromModel(mdl,continParams)

DesignVars(1,1) =

 Name: 'Ki'
 Value: 0
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 1
 Info: [1x1 struct]

DesignVars(2,1) =

 Name: 'Kp'
 Value: 1
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 1
 Info: [1x1 struct]

DesignVars(3,1) =

 Name: 'Kd'
 Value: 0
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 1
 Info: [1x1 struct]

3x1 param.Continuous

DesignVars is a vector of three param.Continuous objects corresponding to Ki, Kp, and Kd in the
order you specified them. Suppose that you also want to tune w0 and zeta, but you want to restrict

 sdo.getParameterFromModel

3-81

them to a finite, discrete set of values. To do so, specify these parameters as the third input argument
to sdo.getParameterFromModel.

discreteParams = ["w0","zeta"];
DesignVars = sdo.getParameterFromModel(mdl,continParams,discreteParams);

Now DesignVars is a vector of length five, containing three param.Continuous objects and two
param.Discrete objects. For instance, compare the third entry, Ki, with the fourth entry,
corresponding to w0.

DesignVars(3)

ans =

 Name: 'Kd'
 Value: 0
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 1
 Info: [1x1 struct]

1x1 param.Continuous

DesignVars(4)

ans =

 Name: 'w0'
 Value: 0.5000
 ValueSet: 0.5000
 Free: 1
 Info: [1x1 struct]

1x1 param.Discrete

The Value properties of the parameters are initialized to their values in the model. To continue with
parameter estimation or response optimization, configure the initial values, the Minimum and
Maximum properties of the continuous variables, and the ValueSet properties of the discrete
parameters as needed. Note that to optimize discrete parameters, you must set the optimization
method of sdo.optimize to surrogateopt. This method requires that all continuous parameters
have finite minimum and maximum values.

Specify All Parameters as Discrete-Valued

If you want to designate all model parameters as discrete-valued, you can use the placeholder "*" as
an input to sdo.getParameterFromModel to avoid explicitly listing every model parameter in the
discreteParams argument. Similarly, if you specify a subset of model parameters in
continParams, you can use "*" to specify the remaining parameters as discrete-valued.

3 Methods and Apps

3-82

Load a model and designate all model parameters as discrete-valued. To do so, specify [] to indicate
that there are no continuous parameters, and "*" to indicate that all parameters are discrete.

mdl = "sldo_model1_stepblk";
load_system(mdl)

DesignVars = sdo.getParameterFromModel(mdl,[],"*");
size(DesignVars)

ans = 1×2

 5 1

DesignVars has five entries, corresponding to the five tunable parameters in the model, Kd, Ki, Kp,
zeta, and w0. All parameters are represented by param.Discrete parameter objects. For instance,
examine the third parameter.

DesignVars(2)

ans =

 Name: 'Ki'
 Value: 0
 ValueSet: 0
 Free: 1
 Info: [1x1 struct]

1x1 param.Discrete

Now, suppose that only w0 is continuous-valued, while you want to limit all remaining parameters to
discrete values.

DesignVars = sdo.getParameterFromModel(mdl,"w0","*");

DesignVars still contains five entries, but this time the first entry is a param.Continuous
parameter object.

DesignVars(1)

ans =

 Name: 'w0'
 Value: 0.5000
 Minimum: -Inf
 Maximum: Inf
 Free: 1
 Scale: 0.5000
 Info: [1x1 struct]

1x1 param.Continuous

The remaining entries are discrete parameters.

 sdo.getParameterFromModel

3-83

Input Arguments
modelname — Simulink model name
string scalar | character vector

Simulink model name, specified as a string scalar or character vector.

continParams — Continuous parameters
string scalar | string vector | character vector | cell array of character vectors | []

Continuous parameters, specified a string scalar, a string vector, a character vector, a cell array of
character vectors, or the empty vector [].

• To specify a single parameter, you can use a string scalar or a character vector, such as "Vc" or
'Vc'.

• To specify multiple parameters, you can use a string array or a cell array of character vectors,
such as ["m","k","c"] or {'Kp','Ki'}.

• If you want to specify only discrete parameters, set continParams to the empty vector [], and
list the parameters with the discparams argument.

If a parameter is in a referenced model, the variable name must include the path. For instance,
suppose you have model TopLevelModel containing a referenced model Controller and you want
to tune parameter Ki.

• If the parameter Ki is in the referenced model Controller, use continParams =
"Controller:Ki".

• If Ki is a model argument in a referenced model, provide the block path from the top-level model.
Thus, if ControlBlock is the name of the block containing Ki in the referenced model
Controller, use continParams = "TopLevelModel/ControlBlock:Ki". For an example
that uses model arguments in response optimization, see “Design Optimization Tuning Parameters
in Referenced Models (Code)”.

discreteParams — Discrete parameters
string scalar | string vector | character vector | cell array of character vectors | "*" | '*'

Discrete parameters, specified a string scalar, a string vector, a character vector, or a cell array of
character vectors.

• To specify a single parameter, you can use a string scalar or a character vector, such as "Vc" or
'Vc'.

• To specify multiple parameters, you can use a string array or a cell array of character vectors,
such as ["m","k","c"] or {'Kp','Ki'}.

• To designate all parameters in the model (or all parameters not explicitly listed in continParams)
as discrete, use the placeholder "*" or '*'.

If a parameter is in a referenced model, the variable name must include the path, as described for the
continParams argument.

Note To use discrete parameters for response optimization or parameter estimation, you must use
the surrogateopt optimization method, specified with sdo.OptimizeOptions.

3 Methods and Apps

3-84

Output Arguments
DesignVars — Tunable parameters
param.Continuous object | param.Discrete object | vector of param.Continuous and
param.Discrete objects

Tunable parameters, returned as a param.Continuous object, a param.Discrete object, or an
array of such parameter objects.

• If you do not specify continParams or discreteParams, then sdo.getParameterFromModel
treats all tunable parameters in the model as continuous variables, and Designvars is an array of
param.Continuous objects corresponding to those parameters.

• If you specify only continParams, then Designvars is an array of param.Continuous objects
corresponding to the parameters listed in continParams, or a single param.Continuousobject
if continParams contains only one name.

• If you set continParams = [] and specify discreteParams, then Designvars is an array of
param.Discrete objects corresponding to the parameters listed in discreteParams, or a
single param.Discrete object if discreteParams contains only one name.

• If you specify parameters in both continParams and discreteParams, then DesignVars is
whose first Nc elements are param.Continuous objects corresponding to the Nc parameters
listed in continParams, and whose remaining Nd elements are param.Discrete objects
corresponding to the Nd parameters listed in discreteParams.

sdo.getParameterFromModel initializes the Value property of each parameter object in
Designvars to the current value of the parameter in the model.

Alternatives
“Specify Design Variables”

Version History
Introduced in R2011b

Discrete-Valued Variables for Mixed-Integer Optimization

Use the discreteParams argument in the new syntax DesignVars =
sdo.getParameterFromModel(modelname,continParams,discreteParams) to specify model
parameters that are limited to a finite set of discrete values. The function represents discrete
parameters as param.Discrete objects.

See Also
sdo.optimize | sdo.setValueInModel | param.Discrete | param.Continuous

Topics
“Design Optimization to Meet Step Response Requirements (Code)”
“Estimate Model Parameter Values (Code)”
“Design Optimization Tuning Parameters in Referenced Models (Code)”
“Discrete-Valued Variables in Response Optimization (Code)”

 sdo.getParameterFromModel

3-85

sdo.getStateFromModel
Package: sdo

Initial state for estimation from Simulink model

Syntax
s = sdo.getStateFromModel(modelname,blockpath)
s = sdo.getStateFromModel(modelname)

Description
s = sdo.getStateFromModel(modelname,blockpath) creates a state parameter object for the
state of a specified block in a Simulink model. Use the state object to either specify the initial-state
value in an experiment or estimate it.

s = sdo.getStateFromModel(modelname) creates state parameter objects for all the states in
the model.

Input Arguments
modelname

Simulink model name, specified as a character vector or string. For example, 'sdoAircraft'.

The model must be open.

blockpath

Block path of the block containing the required state, specified as a character vector or string. For
example, 'sdoAircraft/Actuator Model'.

To specify multiple blocks, use a cell array of character vectors or a string array.

Output Arguments
s

Model state, returned as a param.State object.

s.Value is the initial value of the state in the model.

When you use the syntax s = sdo.getStateFromModel(modelname,blockpath), s contains the
state of the corresponding block.

If blockpath specifies multiple blocks, then sdo.getStateFromModel returns a vector of
param.State objects.

Examples

3 Methods and Apps

3-86

Get States from Model

load_system('sdoAircraft');
blockpath = {'sdoAircraft/Actuator Model', ...
 'sdoAircraft/Controller/Proportional plus integral compensator'};
s = sdo.getStateFromModel('sdoAircraft',blockpath);

Get Model States

modelname = 'sdoAircraft';
load_system(modelname);
s = sdo.getStateFromModel(modelname);

s is a vector containing nine param.State objects, which represent all the states of the
sdoAircraft model.

Version History
Introduced in R2011b

See Also
sdo.Experiment | param.State

Topics
“Estimate Model Parameter Values (Code)”
“Estimate Model Parameters and Initial States (Code)”

 sdo.getStateFromModel

3-87

sdo.getValueFromModel
Package: sdo

Get design variable value from model

Syntax
param_value = sdo.getValueFromModel(modelname,param_des)

Description
param_value = sdo.getValueFromModel(modelname,param_des) gets the value of a design
variable in a Simulink model. The model must be open.

Input Arguments
modelname

Simulink model name, specified as a character vector or string. For example, 'sldo_model1'.

param_des

Design variables, specified as:

• A param.Continuous or param.Discrete object for one variable, or a vector of such parameter
objects for multiple variables. To create these parameter objects, use
sdo.getParameterFromModel.

• Character vector or string for one variable. For multiple variables, specify as cell array of
character vectors or a string array. For example, {'Kp','Ki'}. When you specify variables this
way, you must also provide the value argument.

If a parameter is in a referenced model, the variable name must include the path. For instance, if a
parameter Ki is in a referenced model named Controller used in a top-level model, use
param_des = 'Controller:Ki'.

If Ki is a model argument in a referenced model, provide block path from top-level model as
follows, param_des = 'TopLevelModel/ControlBlock:Ki'. Here, ControlBlock is the
block name in the referenced model.

Output Arguments
param_value

Design variable value in the model.

A cell array for multiple variable values.

Examples

3 Methods and Apps

3-88

Get Current Design Variable Value From Model

load_system('sldo_model1_stepblk');
p_value = sdo.getValueFromModel('sldo_model1_stepblk','Kp');

Alternatively, type:

p_des = sdo.getParameterFromModel('sldo_model1_stepblk','Kp');
p_value = sdo.getValueFromModel('sldo_model1_stepblk',p_des);

Version History
Introduced in R2011b

See Also
sdo.optimize | sdo.setValueInModel | sdo.getParameterFromModel

Topics
“Design Optimization Tuning Parameters in Referenced Models (Code)”

 sdo.getValueFromModel

3-89

sdo.scatterPlot
Scatter plot of samples

Syntax
sdo.scatterPlot(X,Y)
sdo.scatterPlot(X)
[H,AX,BigAX,P,PAx] = sdo.scatterPlot(___)

Description
sdo.scatterPlot(X,Y) creates a matrix of subaxes containing scatter plots of the columns of X
against the columns of Y. If X is p-by-n and Y is p-by-m, then sdo.scatterPlot creates a matrix of
n-by-m subaxes. X and Y must have the same number of rows.

sdo.scatterPlot(X) is the same as sdo.scatterPlot(X,X), except that the subaxes along the
diagonal are replaced with histogram plots of the data in the corresponding column of X. For
example, the subaxes along the diagonal in the ith column is replaced by hist(X(:,i)).

[H,AX,BigAX,P,PAx] = sdo.scatterPlot(___) returns the handles to the graphic objects.
Use these handles to customize the scatter plot. For example, you can specify titles for the subaxes.

Examples

Scatter Plot of Parameter Samples and Cost Function Evaluations

Generally, you use the sdo.scatterPlot(X,Y) syntax with X specifying the samples and Y
specifying the cost function value for each sample. Use the sdo.evaluate command to perform the
cost function evaluation to generate Y. For this example, obtain 100 samples of the Ac and K
parameters of the sdoHydraulicCyclinder model. Calculate the cost function as a function of Ac
and K. Create a scatter plot to see the sample and cost function values.

Load the sdoHydraulicCyclinder model.

load_system('sdoHydraulicCylinder');

Generate 100 samples of the Ac and K parameters.

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});
ps = sdo.ParameterSpace(p);
X = sdo.sample(ps,100);

The first operation obtains the Ac and K parameters as a vector, p. The second operation creates an
sdo.ParameterSpace object, ps, that specifies the probability distributions of the parameter
samples. The third operation generates 100 samples of each parameter, returned as a Table, X.

Calculate the cost function value table.

3 Methods and Apps

3-90

Ac_mean = mean(X{:,1});
K_mean = mean(X{:,2});
Y = table(X{:,1}/Ac_mean+X{:,2}/K_mean,'VariableNames',{'y'});

Create a scatter plot of X and Y.

sdo.scatterPlot(X,Y);

Scatter Plot of Parameter Samples

Sample the Ac and K parameters of the sdoHydraulicCyclinder model. Use a scatter plot to
analyze the samples.

Load the sdoHydraulicCyclinder model.

load_system('sdoHydraulicCylinder');

Generate 100 samples of the Ac and K parameters.

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});
ps = sdo.ParameterSpace(p);
X = sdo.sample(ps,100);

 sdo.scatterPlot

3-91

The first operation obtains the Ac and K parameters as a vector, p. The second operation creates an
sdo.ParameterSpace object, ps, that specifies the probability distributions of the parameter
samples. The third operation generates 100 samples of each parameter, returned as a Table, X.

Create a scatter plot of X.

sdo.scatterPlot(X);

Set Scatter Plot Properties Using Handles

Generate samples of the Ac and K parameters of the sdoHydraulicCyclinder model.

load_system('sdoHydraulicCylinder');
p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});
ps = sdo.ParameterSpace(p);
X = sdo.sample(ps,100);

Create a scatter plot matrix and return the object handles and the axes handles.

figure
[H,AX,BigAX,P,PAx] = sdo.scatterPlot(X);

3 Methods and Apps

3-92

To set properties for the scatter plots, use the handles in H. To set properties for the histograms, use
the patch handles in P. To set axes properties, use the axes handles, Ax, BigAX, and PAx.

Specify a title for the plot matrix and add legends specifying the sample distribution for each
parameter.

title('Samples of the sdoHydraulicCylinder model parameters Ac and K')
legend(PAx(1),'Ac samples - Uniform distribution')
legend(PAx(2),'K samples - Uniform distribution')

 sdo.scatterPlot

3-93

Input Arguments
X — Sampled data
table

Sampled data, specified as a table.

Y — Cost function evaluation data
table

Cost function evaluation data, specified as a table.

Output Arguments
H — Line object handles
matrix

Line object handles, returned as a matrix. This is a unique identifier, which you can use to query and
modify the properties of a specific line object. The line objects are used to create the scatter plots.

AX — Subaxes handles
matrix

3 Methods and Apps

3-94

Subaxes handles, returned as a matrix. This is a unique identifier, which you can use to query and
modify the properties of a specific subaxes.

BigAX — Big axes handle
scalar

Big axes handle, returned as a scalar. This is a unique identifier, which you can use to query and
modify properties of the big axes. BigAX is left as the current axes (gca) so that a subsequent title,
xlabel, or ylabel command will center text with respect to the big axes.

P — Patch object handles
vector | []

Patch object handles, returned as a vector or []. If histogram plots are created, then P is returned as
a vector of patch object handles for the histogram plots. These are unique identifiers, which you can
use to query and modify the properties of a specific patch object. If no histogram plots are created,
then P is returned as empty brackets.

PAx — Handle to invisible histogram axes
vector | []

Handle to invisible histogram axes, returned as a vector or []. If histogram plots are created, then
PAx is returned as a vector of histogram axes handles. These are unique identifiers, which you can
use to query and modify the properties of a specific axes, such as the axes scale. If no histogram plots
are created, then PAx is returned as empty brackets.

Version History
Introduced in R2014a

See Also
sdo.sample | sdo.evaluate

Topics
“Design Exploration Using Parameter Sampling (Code)”
“Identify Key Parameters for Estimation (Code)”
“Analyze Relation Between Parameters and Design Requirements”

 sdo.scatterPlot

3-95

isreal
Determine if parameter value, minimum, and maximum are real

Syntax
isreal(param_obj)

Description
isreal(param_obj) returns true (1) if the Value, Minimum and Maximum properties of
param_obj are all real.

Input Arguments
param_obj

A param.Continuous object.

Default:

Examples

Determine if Parameter Value and Minimum/Maximum Bounds are Real

p = param.Continuous('K',eye(2));
isreal(p)

ans = logical
 1

Because the Value, Minimum, and Maximum properties of all parameters in p are real, isreal
returns 1.

See Also
param.Continuous

3 Methods and Apps

3-96

Parameter Estimator
Estimate model parameters and initial states

Description
The Parameter Estimator app estimates parameters and initial states of a Simulink model using
measured data. The app increases model accuracy so that the model reflects the measured hardware
behavior. For example, you can automatically estimate electric motor resistance, inductance, and
inertia from measured voltage and motor speed data.

Using this app, you can:

• Import and preprocess measured data.
• Find the most influential parameters to estimate (with the Sensitivity Analyzer).
• Estimate model parameters and initial states, and monitor estimation progress.
• Validate estimation results.

You can generate MATLAB code from the app, and accelerate parameter estimation using parallel
computing and Simulink fast restart.

 Parameter Estimator

3-97

Open the Parameter Estimator App
• Simulink Toolstrip: On the Apps tab, under Control Systems, click Parameter Estimator.
• MATLAB command prompt: Enter spetool('modelname').

Examples
• “How the Software Formulates Parameter Estimation as an Optimization Problem”
• “Estimate Parameters from Measured Data”
• “Estimate Model Parameter Values (GUI)”
• “Estimate Model Parameters Per Experiment (GUI)”
• “Estimate Model Parameters and Initial States (GUI)”

3 Methods and Apps

3-98

Programmatic Use
spetool('modelname') opens the Parameter Estimator app and creates a new session. The
model must be open or on the MATLAB path.

spetool(spesession) opens a previously saved Parameter Estimator app session.

Version History
Introduced before R2006a

See Also
sdo.optimize

Topics
“How the Software Formulates Parameter Estimation as an Optimization Problem”
“Estimate Parameters from Measured Data”
“Estimate Model Parameter Values (GUI)”
“Estimate Model Parameters Per Experiment (GUI)”
“Estimate Model Parameters and Initial States (GUI)”

 Parameter Estimator

3-99

Response Optimizer
Optimize model response to satisfy design requirements, test model robustness

Description
The Response Optimizer app automatically optimizes system parameters to improve design
characteristics such as response time, bandwidth, and energy consumption. The system parameters
can be tuned to meet time-domain and frequency-domain requirements such as overshoot and phase
margin, and custom requirements.

Using this app, you can:

• Specify design requirements.
• Incorporate parameter uncertainty to validate the robustness of your design.
• Find the most influential parameters to optimize (with the Sensitivity Analyzer).
• Optimize model parameters, and monitor optimization progress.

You can generate MATLAB code from the app, and you can accelerate response optimization using
parallel computing and Simulink fast restart.

3 Methods and Apps

3-100

Open the Response Optimizer App
• Simulink Toolstrip: On the Apps tab, under Control Systems, click the Response Optimizer.
• MATLAB command prompt: Enter sdotool('modelname').

Examples
• “How the Optimization Algorithm Formulates Minimization Problems”
• “Design Optimization to Meet Step Response Requirements (GUI)”
• “Design Optimization to Meet Time-Domain and Frequency-Domain Requirements (GUI)”
• “Design Optimization to Track Reference Signal (GUI)”
• “Design Optimization Using Frequency-Domain Check Blocks (GUI)”
• “Design Optimization to Meet a Custom Objective (GUI)”
• “Specify Custom Signal Objective with Uncertain Variable (GUI)”

 Response Optimizer

3-101

Programmatic Use
sdotool('modelname') opens the Response Optimizer app and creates a new session. The model
must be open or on the MATLAB path.

sdotool(sdosession) opens a previously saved Response Optimizer app session.

Version History
Introduced in R2011b

See Also
sdo.optimize

Topics
“How the Optimization Algorithm Formulates Minimization Problems”
“Design Optimization to Meet Step Response Requirements (GUI)”
“Design Optimization to Meet Time-Domain and Frequency-Domain Requirements (GUI)”
“Design Optimization to Track Reference Signal (GUI)”
“Design Optimization Using Frequency-Domain Check Blocks (GUI)”
“Design Optimization to Meet a Custom Objective (GUI)”
“Specify Custom Signal Objective with Uncertain Variable (GUI)”

3 Methods and Apps

3-102

addParameter
Class: sdo.ParameterSpace
Package: sdo

Add parameter to sdo.ParameterSpace object

Syntax
ps = addParameter(ps0,p)
ps = addParameter(ps0,p,pdist)

Description
ps = addParameter(ps0,p) adds a model parameter, p, to an sdo.ParameterSpace object, ps0,
and returns the updated object, ps. The software updates the ParameterNames property to include
the parameter name.

The software also updates the ParameterDistributions property to specify the uniform
distribution for the parameter. The software sets the values of the two parameters of the uniform
distribution:

• Lower — Set to p.Minimum. If p.Minimum is equal to -Inf, then the software sets Lower to
0.9*p.Value. Unless p.Value is equal to 0, in which case the software sets Lower to -1.

• Upper — Set to p.Maximum. If p.Maximum is equal to Inf, then the software sets Upper to
1.1*p.Value. Unless p.Value is equal to 0, in which case the software sets Upper to 1.

ps = addParameter(ps0,p,pdist) specifies the probability distribution of p.

Input Arguments
ps0

Parameter space, specified as an sdo.ParameterSpace object.

p

Model parameters and states, specified as a vector of param.Continuous objects.

For example, sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'}).

pdist

Probability distribution of model parameters, specified as a vector of univariate probability
distribution objects.

• If pdist is the same size as p, the software specifies each entry of pdist as the probability
distribution of the corresponding parameter in p.

• If pdist contains only one distribution, the software specifies this object as the probability
distribution for all the parameters in p.

 addParameter

3-103

Use the makedist command to create a univariate probability distribution object. For example,
makedist('Normal','mu',10,'sigma',3).

To check if pdist is a univariate distribution object, run
isa('pdist,'prob.UnivariateDistribution').

Output Arguments
ps

Updated parameter space, returned as an sdo.ParameterSpace object.

Examples

Add Parameters to Parameter Space Object

Create an sdo.ParameterSpace object, ps, for the Ac parameter of sdoHydraulicCylinder
model.

load_system('sdoHydraulicCylinder');
pAc = sdo.getParameterFromModel('sdoHydraulicCylinder','Ac');
ps = sdo.ParameterSpace(pAc);

Add the K parameter to ps.

pK = sdo.getParameterFromModel('sdoHydraulicCylinder','K');
ps = addParameter(ps,pK);

Add Parameter with Specified Distribution to Parameter Space Object

Create an sdo.ParameterSpace object for the Ac and C1 parameters of the
sdoHydraulicCylinder model.

load_system('sdoHydraulicCylinder');
p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','C1'});
ps = sdo.ParameterSpace(p);

Add the K parameter to ps. Specify a normal distribution for K.

pK = sdo.getParameterFromModel('sdoHydraulicCylinder','K');
pKdist = makedist('Normal','mu',pK.Value,'sigma',2);
ps = addParameter(ps,pK,pKdist);

See Also
sdo.sample | sdo.getParameterFromModel | makedist | removeParameter

Topics
“Generate Parameter Samples for Sensitivity Analysis”

3 Methods and Apps

3-104

removeParameter
Class: sdo.ParameterSpace
Package: sdo

Remove parameter from sdo.ParameterSpace object

Syntax
ps = removeParameter(ps0,p)

Description
ps = removeParameter(ps0,p) removes the parameter, p, from the sdo.ParameterSpace
object, ps0, and returns the updated object, ps.

Input Arguments
ps0

Parameter space, specified as an sdo.ParameterSpace object.

p

Parameters to be removed, specified as one of the following:

• Vector of param.Continuous objects — Parameter objects. For example, p =
sdo.getParameterFromModel('sdoHydraulicCylinder','Ac').

• Parameter name, specified as a character vector or string. For example, 'Ac'.

Output Arguments
ps

Updated parameter space, returned as an sdo.ParameterSpace object.

Examples

Remove Parameter From sdo.ParameterSpace Object

Create an sdo.ParameterSpace object, ps, for the Ac and K parameters of the
sdoHydraulicCylinder model.

load_system('sdoHydraulicCylinder');
p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});
ps = sdo.ParameterSpace(p)

ps =
 ParameterSpace with properties:

 removeParameter

3-105

 ParameterNames: {'Ac' 'K'}
 ParameterDistributions: [1x2 prob.UniformDistribution]
 RankCorrelation: []
 Options: [1x1 sdo.SampleOptions]
 Notes: []

Remove K from ps.

ps = removeParameter(ps,p(2))

ps =
 ParameterSpace with properties:

 ParameterNames: {'Ac'}
 ParameterDistributions: [1x1 prob.UniformDistribution]
 RankCorrelation: []
 Options: [1x1 sdo.SampleOptions]
 Notes: []

Remove Ac from ps using the parameter name.

ps = removeParameter(ps,'Ac');

See Also
sdo.ParameterSpace | addParameter | sdo.getParameterFromModel

3 Methods and Apps

3-106

setDistribution
Class: sdo.ParameterSpace
Package: sdo

Set distribution of parameter in sdo.ParameterSpace object

Syntax
ps = setDistribution(ps0,p,pdist)

Description
ps = setDistribution(ps0,p,pdist) updates the ParameterDistributions property of the
sdo.ParameterSpace object, ps0, for the specified parameters, p, and returns the updated object,
ps.

Input Arguments
ps0

Parameter space, specified as an sdo.ParameterSpace object.

p

Parameters whose distributions are to be updated, specified as one of the following:

• Vector of param.Continuous objects — Parameter objects. For example, p =
sdo.getParameterFromModel('sdoHydraulicCylinder','Ac').

• Parameter name, specified as a character vector or string. For example, 'Ac'.

pdist

Probability distribution for model parameters, specified as a vector of univariate probability
distribution objects.

• If pdist is the same size as p, the software specifies each entry of pdist as the probability
distribution of the corresponding parameter in p.

• If pdist contains only one distribution, the software specifies this object as the probability
distribution for all the parameters in p.

Use the makedist command to create a univariate probability distribution object. For example,
makedist('Normal','mu',10,'sigma',3).

To check if pdist is a univariate distribution object, run
isa(pdist,'prob.UnivariateDistribution').

 setDistribution

3-107

Output Arguments
ps

Updated parameter space, returned as an sdo.ParameterSpace object.

Examples

Set Distribution of Parameters in Parameter Space

Create an sdo.ParameterSpace object for the Ac and K parameters of sdoHydraulicCylinder
model.

load_system('sdoHydraulicCylinder');
p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});
ps = sdo.ParameterSpace(p);

By default, a uniform distribution is specified for all parameters in p.

ps.ParameterDistributions

ans =
 1x2

Specify a normal distribution for Ac and K.

pAcdist = makedist('Normal','mu',p(1).Value,'sigma',1);
pKdist = makedist('Normal','mu',p(2).Value,'sigma',3);
ps = setDistribution(ps,p,[pAcdist;pKdist]);

See Also
sdo.sample | sdo.getParameterFromModel | makedist

3 Methods and Apps

3-108

sdo.setCheckBlockEnabled
Package: sdo

Enable or disable all check blocks in model

Syntax
chk_blk_state = sdo.setCheckBlockEnabled(modelname,state)

Description
chk_blk_state = sdo.setCheckBlockEnabled(modelname,state) sets the Enabled
parameter of all the check blocks in an open Simulink model to the specified value. The function
returns the original value of the Enabled parameter of all the model check blocks.

Use this function to disable the check blocks (model verification blocks) in a model before running an
optimization for the model. After optimization completes, you can restore the enabled state of the
model check blocks by calling this function again. Use the output from the previous call as the second
input for the function.

Input Arguments
modelname

Simulink model name, specified as a character vector or string. For example, 'pidtune_demo'.

The model must be open.

state

Switch enabling or disabling model check blocks, specified as either 'on' or 'off'.

To restore the enabled state of the model check blocks, specify state as the output from the previous
call to sdo.setCheckBlockEnabled.

Output Arguments
chk_blk_state

Original values of the Enabled block parameter of the model check blocks, returned as a cell array of
character vectors.

Examples

Disable Model Check Blocks

Open the model.

 sdo.setCheckBlockEnabled

3-109

modelname = 'pidtune_demo';
open_system(modelname);

Disable the model check blocks in a model.

state = 'off';
chkBlkState = sdo.setCheckBlockEnabled(modelname,state);

Restore the enabled state of the model check blocks.

sdo.setCheckBlockEnabled(modelname,chkBlkState);

Alternatives
You can open each model verification block in a model and select or clear the Enable assertion
check box.

Version History
Introduced in R2012b

See Also

3 Methods and Apps

3-110

sdo.setValueInModel
Package: sdo

Set design variable value in model

Syntax
sdo.setValueInModel(modelname,param_des)
sdo.setValueInModel(modelname,param_des,value)

Description
sdo.setValueInModel(modelname,param_des) sets the value of a parameter in an open
Simulink model to the Value property of the design variable param_des .

You generally use this command to update the Simulink model with optimized parameter values.

sdo.setValueInModel(modelname,param_des,value) sets the parameter to the value you
specify.

Input Arguments
modelname

Simulink model name, specified as a character vector or string. For example, 'sldo_model1'.

param_des

Design variables, specified as:

• A param.Continuous or param.Discrete object for one variable, or a vector of such parameter
objects for multiple variables. To create these parameter objects, use
sdo.getParameterFromModel.

• Character vector or string for one variable. For multiple variables, specify as cell array of
character vectors or a string array. For example, {'Kp','Ki'}. When you specify variables this
way, you must also provide the value argument.

If a parameter is in a referenced model, the variable name must include the path. For instance, if a
parameter Ki is in a referenced model named Controller used in a top-level model, use
param_des = 'Controller:Ki'.

If Ki is a model argument in a referenced model, provide block path from top-level model as
follows, param_des = 'TopLevelModel/ControlBlock:Ki'. Here, ControlBlock is the
block name in the referenced model.

value

Value to set for the design variable.

 sdo.setValueInModel

3-111

Use a cell array with the same number of elements as the number of variables in param_des for
setting values of multiple design variables. value is required if param_des is a character vector or
string.

Examples
Change the design variable value in a model.

sldo_model1_stepblk;
p_des = sdo.getParameterFromModel('sldo_model1_stepblk','Kp');
p_des.Value = 1.1*p_des.Value;
sdo.setValueInModel('sldo_model1_stepblk',p_des);

The value of Kp is set to the Value property of p_des.

Alternatives
“Update Model with Design Variables Set”

Version History
Introduced in R2011b

See Also
sdo.optimize | sdo.getValueFromModel | sdo.getParameterFromModel

Topics
“Design Optimization to Meet Step Response Requirements (Code)”
“Design Optimization to Track Reference Signal (GUI)”
“Discrete-Valued Variables in Response Optimization (Code)”
“Design Optimization Using Frequency-Domain Check Blocks (GUI)”
“Design Optimization Tuning Parameters in Referenced Models (Code)”

3 Methods and Apps

3-112

sdo.optimize
Solve design optimization problem

Syntax
[optimParam,optimInfo] = sdo.optimize(optimFcn,param)
[optimParam,optimInfo] = sdo.optimize(optimFcn,param,options)
[optimParam,optimInfo] = sdo.optimize(prob)

Description
Solve an optimization problem to find the values of design variables that satisfy the design
requirements.

Use sdo.optimize to solve a design optimization problem of the following form:

min
p

F(p) subject to

Cleq(p) ≤ 0
Ceq(p) = 0
A × p ≤ B
Aeq × p = Beq
lb ≤ p ≤ ub

Here:

• F is the cost (objective).
• p is a scalar or vector of design variables.
• Cleq and Ceq are the nonlinear inequality and equality constraints, respectively.
• A and B are the linear inequality constraints.
• Aeq and Beq are the linear equality constraints.
• lb and ub are the lower and upper bounds on p, respectively.

sdo.optimize can optimize continuously varying parameters and discrete-valued parameters
(mixed-integer optimization). Tuning discrete-valued parameters requires Global Optimization
Toolbox software.

[optimParam,optimInfo] = sdo.optimize(optimFcn,param) uses fmincon, the default
optimization method, to find the parameter values optimParam that satisfy the requirements
specified in optimFcn.

[optimParam,optimInfo] = sdo.optimize(optimFcn,param,options) solves the
optimization problem with the optimization options specified in options. Use
sdo.OptimizeOptions to set these options.

[optimParam,optimInfo] = sdo.optimize(prob) solves the optimization problem specified in
a structure prob that contains the function to be minimized, design variables, and optimization
options.

 sdo.optimize

3-113

Examples

Optimize Model Response

Solve an optimization problem specified in sdoExampleCostFunction. The example cost function is
included with the Simulink® Design Optimization™ software.

This example function computes the following cost:

f x = x2

The function also includes the following nonlinear and linear inequality constraints, respectively:

x2− 4x + 1 ≤ 0

2x
3 − 3 ≤ 0

For optimization, f x is minimized, subject to satisfying the constraints. The example function also
computes cost and constraint gradients.

Create a design variable, using an initial value of 1.

p = param.Continuous('x',1);

Specify default optimization options to use fmincon solver. For this example, to include cost and
constraint gradient evaluation from sdoExampleCostFunction, set the GradFcn option to 'on'.

opts = sdo.OptimizeOptions;
opts.GradFcn = 'on';

Optimize the parameter.

[pOptim,optim_info] = sdo.optimize(@(p) sdoExampleCostFunction(p),p,opts);

 Optimization started 01-Sep-2022 13:46:08

 max First-order
 Iter F-count f(x) constraint Step-size optimality
 0 3 1 0
 1 5 0.09 0 0.7 0.59
 2 6 0.0716349 0.001047 0.0324 0.0129
 3 7 0.0717968 9.127e-08 0.000302 2.37e-06
Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

The optimized parameter value is stored in the Value property of the returned param.Continuous
object pOptim.

pOptim.Value

ans = 0.2679

3 Methods and Apps

3-114

Input Arguments
optimFcn — Cost function to minimize
function handle

Cost function to minimize, specified as a function handle. The optimization solver calls this function
during optimization.

The function requires:

• One input argument, which is a vector of parameters to be tuned, represented by
param.Continuous objects, param.Discrete objects, or a mixture of both.

Note To use discrete-valued parameters for response optimization or parameter estimation, you
must use the surrogateopt optimization method, specified with sdo.OptimizeOptions.

To pass additional input arguments, use an anonymous function. For example, new_fcn = @(p)
fcn(p,arg1,arg2,...).

• One output argument, which is a structure with one or more of the following fields:

Field Value
F Cost (objective) evaluated at p. The solver

minimizes F.

F is a scalar double.
Cleq Nonlinear inequality constraint violations

evaluated at p. The solver satisfies Cleq(p) ≤
0.

Cleq is a double m-by-1 vector, where m is the
number of nonlinear inequality constraints.

Ceq Nonlinear equality constraint violations
evaluated at p. The solver satisfies Ceq(p) = 0.

Ceq is a double r-by-1 vector, where r is the
number of nonlinear equality constraints.

leq Linear inequality constraint violations
evaluated at p. The solver satisfies leq(p) ≤ 0.

leq is a double n-by-1 vector, where n is the
number of linear inequality constraints.

eq Linear equality constraint violations evaluated
at p. The solver satisfies eq(p) = 0.

eq is a double s-by-1 vector or [], where s is
the number of linear equality constraints.

To specify a pure feasibility problem, omit F or set F = []. To specify a minimization problem,
omit Cleq, Ceq, leq, and eq, or set their values to [].

 sdo.optimize

3-115

The software computes gradients of the cost and constraint violations using numeric perturbation.
If you want to specify how the gradients are computed, include a second output argument and set
the GradFcn property of sdo.OptimizeOptions to 'on'. This argument must be a structure
with one or more of the following fields:

Field Value
F Double n-by-1 vector that contains dF(p)/dp,

where n is the number of scalar parameters
Cleq Double n-by-m matrix that contains

dCleq(p)/dp, where m is the number of
nonlinear inequality constraints

Ceq Double n-by-r matrix that contains
dCeq(p)/dp, where r is the number of
nonlinear equality constraints

You must return the derivatives of all applicable objective and constraint violations.

Example: For an example of a cost function that you can optimize using Simulink Design Optimization
software, enter edit sdoExampleCostFunction in the MATLAB command window.
Data Types: function_handle

param — Model parameters to optimize
param.Continuous object | param.Discrete object | vector of param.Continuous objects,
param.Discrete objects, or both

Model parameters to optimize, specified as:

• A param.Continuous object, to tune a single continuously varying parameter.
• A param.Discrete object, to tune a single discrete-valued parameter.
• A vector containing param.Continuous objects, param.Discrete objects, or a mixture of both,

to tune multiple parameters.

Use sdo.getParameterFromModel to obtain the parameter objects for param.

Note To use discrete-valued parameters for response optimization or parameter estimation, you must
use the surrogateopt optimization method, specified with sdo.OptimizeOptions.

options — Optimization options
sdo.OptimizeOptions object

Optimization options, specified as an object created using sdo.OptimizeOptions. Use this option
set to specify:

• Optimization method
• Maximum number of iterations
• Tolerances

prob — Optimization problem structure
structure

3 Methods and Apps

3-116

Optimization problem structure, specified as a structure with the following fields:

Field Name Value
OptFcn Cost function to minimize. See optimFcn for the

input and output argument requirements of this
function.

Parameters Model parameters to optimize, specified as
param.Continuous or param.Discrete
objects.

Options Optimization options, created with
sdo.OptimizeOptions.

Data Types: struct

Output Arguments
optimParam — Optimized parameter values
param.Continuous object | param.Discrete object | vector of param.Continuous objects,
param.Discrete objects, or both

Optimized parameter values, returned as a param.Continuous object, a param.Discrete, or a
vector of such parameter objects. The size and composition of optimParam is the same as that of
param. The optimized parameter values are stored in the Value property of the corresponding
returned param.Continuous or param.Discrete object. To get the optimized values into your
Simulink model, use sdo.setValueInModel.

optimInfo — Optimization information
structure

Optimization information, returned as a structure with one or more of the following fields:

Field Value
F Optimized cost (objective) value.
Cleq Optimized nonlinear inequality constraint

violations.

The field appears if you specify a nonlinear
inequality constraint in optimFcn.

The value is a m-by-1 vector, where the order of
the elements corresponds to the order specified
in optimFcn. Positive values indicate that the
constraint is not satisfied. Check the exitflag
field to confirm that the optimization succeeded.

 sdo.optimize

3-117

Field Value
Ceq Optimized nonlinear equality constraint

violations.

The field appears if you specify a nonlinear
equality constraint in optimFcn.

The value is a double r-by-1 vector, where the
order of the elements corresponds to the order
specified in optimFcn. Any nonzero values
indicate that the constraint is not satisfied. Check
the exitflag field to confirm that the
optimization succeeded.

leq Optimized linear inequality constraint violations.

The field appears if you specify a linear inequality
constraint in optimFcn.

The value is a double n-by-1 vector, where the
order of the elements corresponds to the order
specified in optimFcn. Nonzero values indicate
that the constraint is not satisfied. Check the
exitflag field to confirm that the optimization
succeeded.

eq Optimized linear equality constraint violations.

The field appears if you specify linear equality
constraints in optimFcn.

The value is a double s-by-1 vector, where the
order of the elements corresponds to the order
specified in optimFcn. Nonzero values indicate
that the constraint is not satisfied. Check the
exitflag field to confirm that the optimization
succeeded.

Gradients Cost and constraint gradients at the optimized
parameter values. See “How the Optimization
Algorithm Formulates Minimization Problems” on
how the solver computes gradients.

This field appears if the solver specified in the
Method property of sdo.OptimizeOptions
computes gradients.

The value is a structure whose fields are
dependent on optimFcn.

3 Methods and Apps

3-118

Field Value
Jacobian Jacobian information at the optimized parameter

values.

The field appears if the solver specified in the
Method property of sdo.OptimizeOptions
computes Jacobians.

The value is a structure whose fields are
dependent on optimFcn.

exitflag Integer identifying the reason the algorithm
terminated. See fmincon, patternsearch,
fminsearch, and lsqnonlin for a list of the
values and the corresponding termination
reasons.

iterations Number of optimization iterations.
SolverOutput Structure with solver-specific output information.

The fields of this structure depends on the
optimization solver specified in the Method
property of sdo.OptimizeOptions. See
fmincon, patternsearch, fminsearch, and
lsqnonlin for a list of solver outputs and their
description.

Stats Structure that contains statistics collected during
optimization, such as start and end times,
number of function evaluations, and restarts.

Data Types: struct

Tips
By default, the software displays the optimization information for each iteration in the MATLAB
command window. To learn more about the information displayed, see:

• “Iterative Display” when the optimization method is specified as 'fmincon' (default),
'fminsearch', or 'lsqnonlin'

• “Display to Command Window Options” (Global Optimization Toolbox) when the optimization
method is specified as 'patternsearch'

You can configure the level of this display using the MethodOptions.Display property of an
optimization option set.

Alternative Functionality
Apps

The Response Optimizer app provides a graphical interface to specify design requirements and
optimize model parameters. For more information, see “Design Optimization to Meet a Custom
Objective (GUI)” and “Design Optimization to Track Reference Signal (GUI)”.

 sdo.optimize

3-119

The Parameter Estimator app provides a graphical interface to specify experiments and tune model
parameters so that the model output matches the experiment data. For more information, see
“Estimate Model Parameter Values (GUI)”.

Version History
Introduced in R2011a

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the UseParallel property of the sdo.OptimizeOptions object to true.

For more information, see “Use Parallel Computing for Response Optimization” and “Use Parallel
Computing for Parameter Estimation”.

See Also
sdo.OptimizeOptions | param.Continuous | param.Discrete |
sdo.getParameterFromModel | sdo.setValueInModel

Topics
“Design Optimization to Meet a Custom Objective (Code)”
“Design Optimization to Meet Step Response Requirements (Code)”
“Design Optimization to Meet Frequency-Domain Requirements (Code)”
“Discrete-Valued Variables in Response Optimization (Code)”
“Estimate Model Parameter Values (Code)”

3 Methods and Apps

3-120

sdo.sample
Generate parameter samples

Syntax
x = sdo.sample(ps)
x = sdo.sample(ps,N)
x = sdo.sample(___ ,opt)

Description
x = sdo.sample(ps) generates samples using the specified parameter space definition, ps. The
output sample table, x, has 2Np+1 rows and Np columns. Each column corresponds to a parameter
and each row corresponds to a sample of the parameters. Np is the number of parameters in ps. The
samples are generated as per the ParameterDistributions, RankCorrelation, and Options
property of ps.

x = sdo.sample(ps,N) specifies the number of samples to be generated. x is a table with N rows
and Np columns.

x = sdo.sample(___ ,opt) specifies sampling options such as the sampling method. This syntax
can include any of the input argument combinations in the previous syntaxes.

Examples

Generate Parameter Samples

Open the model.

open_system('sdoHydraulicCylinder');

 sdo.sample

3-121

Obtain the parameters from the model.

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

Create an sdo.ParameterSpace object to specify the sample distributions.

ps = sdo.ParameterSpace(p);

Generate samples for the parameters.

x = sdo.sample(ps);

Specify Number of Samples

Open the model.

open_system('sdoHydraulicCylinder');

Obtain the parameters from the model.

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

Create an sdo.ParameterSpace object to specify the sample distributions.

ps = sdo.ParameterSpace(p);

Generate 50 samples for the parameters.

x = sdo.sample(ps,50);

Specify Sampling Method

Open the model.

3 Methods and Apps

3-122

open_system('sdoHydraulicCylinder');

Obtain the parameters from the model.

p = sdo.getParameterFromModel('sdoHydraulicCylinder',{'Ac','K'});

Create an sdo.ParameterSpace object to specify the sample distributions.

ps = sdo.ParameterSpace(p);

Specify the sampling method as Latin hypercube.

opt = sdo.SampleOptions;
opt.Method = 'lhs';

Generate 50 samples for the parameters using Latin hypercube sampling.

x = sdo.sample(ps,50,opt);

Input Arguments
ps — Parameter space distribution
sdo.ParameterSpace object

Parameter space distribution definition, specified as an sdo.ParameterSpace object.

N — Number of samples
positive integer

Number of samples to be generated for the parameters, specified as a positive integer.

Ideally, you want to use the smallest number of samples that yield useful results, because each
sample requires a model evaluation.

 sdo.sample

3-123

As the number of parameters increases, the number of samples needed to explore the design space
generally increases. For correlation or regression analysis, consider using 10Np samples, where Np is
the number of parameters.
Example: 10

opt — Sampling options
sdo.SampleOptions object

Sampling options, specified as an sdo.SampleOptions object.

Output Arguments
x — Parameter samples
table

Parameter samples, returned as a table.

x has Ns rows and Np columns. Each column corresponds to a parameter and each row corresponds
to a sample of the parameters. Np is the number of parameters in ps. If you specify N, Ns is equal to
N. Otherwise, Ns is equal to 2Np+1.

Version History
Introduced in R2014a

See Also
sdo.SampleOptions | sdo.evaluate

Topics
“Design Exploration Using Parameter Sampling (Code)”
“Identify Key Parameters for Estimation (Code)”
“Generate Parameter Samples for Sensitivity Analysis”

3 Methods and Apps

3-124

fastRestart
Class: sdo.SimulationTest
Package: sdo

Simulate Simulink model in fast restart mode using simulation scenario

Syntax
Simulator_out = fastRestart(Simulator,EnablefastRestart)

Description
Simulator_out = fastRestart(Simulator,EnablefastRestart) configures a Simulink
model and simulation scenario specified in sdo.SimulationTest object, Simulator, for simulation
in fast restart mode. Fast restart configures the model to compile once when first simulated.
Subsequent model simulations reuse the compiled data, speeding up subsequent simulation runs.

Input Arguments
Simulator — Simulation scenario for Simulink model
sdo.SimulationTest object (default)

Simulation scenario for Simulink model, specified as an sdo.SimulationTest object. A simulation
scenario specifies input signals, model parameter and initial state values, and signals to log for a
model.

If you want to linearize the model, for example if you have frequency-domain design requirements,
specify the linearization logging information in the SystemLoggingfInfo property of Simulator.

EnablefastRestart — Configuration of model and simulation scenario for fast restart
'on' (default) | 'off'

Configuration of model and simulation scenario for fast restart, specified as one of the following
values:

• 'on' — Initializes a Simulink model to simulate in the fast restart mode using simulation scenario
specified in Simulator object. Fast restart configures the model to compile once when first
simulated. Subsequent model simulations reuse the compiled data, speeding up subsequent
simulation runs.

Once you have initialized a model in fast restart, you can change only tunable properties of the
model.

• 'off' — Turns off the fast restart mode. Use this option to change nontunable properties of your
model.

Output Arguments
Simulator_out — Simulation scenario configured for fast restart
sdo.SimulationTest object

 fastRestart

3-125

Simulation scenario configured for fast restart, returned as a sdo.SimulationTest object.

Examples

Simulate a Model in Fast Restart Mode

Open the model.

open_system('sdoHydraulicCylinder')

Create a simulation scenario for the model.

simulator = sdo.SimulationTest('sdoHydraulicCylinder');

Configure the model and simulator for fast restart.

simulator = fastRestart(simulator,'on');

Simulate the model.

simulator = sim(simulator);

The first simulation in fast restart mode requires the model to compile. Subsequent simulations
execute in fast restart mode and reuse the compiled data.

Adjust tunable model parameters.

Ac = sdo.getParameterFromModel('sdoHydraulicCylinder','Ac');
Ac.Value = 0.5;
simulator.Parameters = Ac;

Simulate the model again.

simulator = sim(simulator);

The model simulates in fast restart mode.

3 Methods and Apps

3-126

Turn off fast restart mode.

simulator = fastRestart(simulator,'off');

Tips
• To optimize, evaluate, or estimate a Simulink model, first create a simulator configured for fast

restart (Simulator_out). Then use Simulator_out as an input to your cost function. If you
create a simulator in the cost function, you cannot use fast restart mode.

• When you enable fast restart, you can change only tunable properties of the model.
• To linearize the model, specify the linearization logging information in the SystemLoggingfInfo

property of Simulator before configuring the model for fast restart.

Version History
Introduced in R2015b

See Also
sdo.optimize | sdo.evaluate | sdo.SimulationTest | sim | find | who

Topics
“Improving Optimization Performance Using Fast Restart (Code)”
“Use Fast Restart Mode During Response Optimization”
“Use Fast Restart Mode During Sensitivity Analysis”

 fastRestart

3-127

find
Class: sdo.SimulationTest
Package: sdo

Find logged data set

Syntax
data = find(sim_obj,data_name)

Description
data = find(sim_obj,data_name) searches for an element with a specific name in the
LoggedData property of sim_obj. Use who to find possible names.

Input Arguments
sim_obj

sdo.SimulationTest object

data_name

Data set name to search for, specified as a character vector or string.
Example: 'sdoHydraulicCylinder'

Output Arguments
data

Logged simulation data for the data set name specified in data_name.

Examples

Find Logged Data Set

Log model signals.

Pressures = Simulink.SimulationData.SignalLoggingInfo;
Pressures.BlockPath = 'sdoHydraulicCylinder/Cylinder Assembly';
Pressures.OutputPortIndex = 1;
simulator = sdo.SimulationTest('sdoHydraulicCylinder');
simulator.LoggingInfo.Signals = Pressures;

Run a simulation.

sim = sim(simulator);

Search for logged data.

3 Methods and Apps

3-128

sim_log = find(simulator,'sdoHydraulicCylinder');

See Also
sdo.optimize | sim | fastRestart | who

Topics
“Design Optimization to Meet Step Response Requirements (Code)”
“Design Optimization to Meet a Custom Objective (Code)”

 find

3-129

prepareToDeploy
Class: sdo.SimulationTest
Package: sdo

Configure simulation scenario for deployment with Simulink Compiler

Syntax
Simulator_out = prepareToDeploy(Simulator)
Simulator_out = prepareToDeploy(Simulator,p)

Description
Simulator_out = prepareToDeploy(Simulator) configures the Simulink model and simulation
scenario specified as the sdo.SimulationTest object Simulator, for deployment with Simulink
Compiler.

prepareToDeploy saves logging and parameter information in the simulation scenario
Simulator_out so that the sdo.SimulationTest object does not need to perform model error
checking or configuration when deployed as part of an executable.

Simulator_out = prepareToDeploy(Simulator,p) configures the sdo.SimulationTest
object Simulator for deployment with an optional vector p of param.Continuous objects that can
be used to modify the model variables once the model is deployed.

Input Arguments
Simulator — Simulation scenario for Simulink model
sdo.SimulationTest object (default)

Simulation scenario for a Simulink model, specified as an sdo.SimulationTest object. A simulation
scenario specifies input signals, model parameter and initial state values, and signals to log for a
model.

p — Parameters to modify the deployed model
vector

Parameters to modify the deployed model, specified as a vector of param.Continuous objects. You
can use p to modify the model variables once the model is deployed.

Output Arguments
Simulator_out — Simulation scenario configured for deployment with Simulink Compiler
sdo.SimulationTest object

Simulation scenario configured for deployment with Simulink Compiler, returned as an
sdo.SimulationTest object.

3 Methods and Apps

3-130

Examples

Set Up Experiment and Simulation Test Objects for Deployment

For this example, set up your parameter estimation problem using the Parameter Estimator app
and generate MATLAB code from it. For more information on generating MATLAB code from the app,
see “Generate MATLAB Code for Parameter Estimation Problems (GUI)”. Alternatively, you can also
set up your estimation problem at the command line.

Next, split the generated MATLAB code just before the estimation objective function is defined. This
results in two files − a run function and a setup function, as described in “Parameter Tuning for
Digital Twins”.

In the setup function, add the following lines of code at the end to configure the experiment and
simulation test objects for deployment and save them to a MAT-file.

Experiment_out = prepareToDeploy(Experiement);
Simulator = createSimulator(Experiment_out);
Simulator = prepareToDeploy(Simulator,p);
save ObjectsToDeploy Experiment_out Simulator p

In the run function, add the following lines of code at the beginning of the function to include the
Simulink model in the compiled code and load the objects that were saved in the setup function.

%#function simulink_model_name.slx
load ObjectsToDeploy Experiment_out Simulator p

Next, add the following lines to load the experiment data and update the experiment object. For this
example, assume that the experiment data is contained in the first three columns of a Microsoft Excel
spreadsheet file named fname.xls.

d = xlsread(fname);
u = timeseries(d(:,3),d(:,1));
y = timeseries(d(:,2),d(:,1));
Experiment_out = updateIOData(Experiment_out,'simulink_model_name/param1',u);
Experiment_out = updateIOData(Experiment_out,'simulink_model_name/param2',y);

For a detailed example showing how to deploy your parameter estimation problem using the Simulink
Compiler, see “Parameter Tuning for Digital Twins”.

Version History
Introduced in R2020a

See Also
sdo.SimulationTest | param.Continuous

Topics
“Parameter Tuning for Digital Twins”

 prepareToDeploy

3-131

sim
Class: sdo.SimulationTest
Package: sdo

Simulate Simulink model using simulation scenario

Syntax
sim_out = sim(sim_obj)
sim_out = sim(sim_obj,Name,Value)

Description
sim_out = sim(sim_obj) simulates a Simulink model using the simulation scenario specified in
sim_obj.

Before simulating the model, specify the parameter values and signals to log in the Parameters and
LoggingInfo properties of sim_obj. The software restores the parameter values and logging
settings to their original values after simulation.

sim_out = sim(sim_obj,Name,Value) specifies simulation parameters using one or more
Name,Value pair arguments.

Input Arguments
sim_obj — Simulation scenario
sdo.SimulationTest object

Simulation scenario for a model, specified as an sdo.SimulationTest object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: sim_out = sim(sim_obj,'TimeOut',20) specifies the maximum simulation run time
as 20 seconds.

You can specify any of the simulation parameters that the Simulink sim command accepts as
Name,Value arguments. In addition, you can specify the following parameters.

ErrorOnWarnings — Treatment of warnings as errors
false (default) | true

Treatment of warnings as errors, specified as the comma-separated pair consisting of
'ErrorOnWarnings' and true or false. When you specify ErrorOnWarning as true, the sim
command treats warnings that are generated during simulation as errors.

3 Methods and Apps

3-132

Data Types: logical

RestoreSettingsAfterSim — Restoration of settings after simulation
true (default) | false

Restoration of settings after simulation, specified as the comma-separated pair consisting of
'RestoreSettingsAfterSim' and one of true or false. When you specify
RestoreSettingsAfterSim as true, the sim command restores model parameter and model
signal logging changes after the simulation ends.
Data Types: logical

OperatingPointSetup — Operating point setup object
sdo.OperatingPointSetup object

Operating point setup object, specified as the comma-separated pair consisting of
'OperatingPointSetup' and an sdo.OperatingPointSetup object.

OperatingPointSetup must be specified as an sdo.OperatingPointSetup object. If provided,
the steady-state operating point is computed.

For more information about computing a steady-state operating point during model simulation, see
sdo.OperatingPointSetup.
Data Types: function_handle

Output Arguments
sim_out — Simulation scenario object containing logged signal data
sdo.SimulationTest object

Simulation scenario object containing logged signal data, returned as an sdo.SimulationTest
object. The logged data is stored in the LoggedData property of sim_out.

Examples

Store Logged Signal Data During Simulation

Simulate the sdoHydraulicCylinder model, and store the Pressures signal of the model.

Log the Pressures signal that is output from the first port in the Cylinder Assembly block of the
model.

Pressures = Simulink.SimulationData.SignalLoggingInfo;
Pressures.BlockPath = 'sdoHydraulicCylinder/Cylinder Assembly';
Pressures.OutputPortIndex = 1;

Create a simulation scenario for the model, and specify the signal to log.

simulator = sdo.SimulationTest('sdoHydraulicCylinder');
simulator.LoggingInfo.Signals = [Pressures];

Specify parameter values for simulation.

 sim

3-133

Ac = sdo.getParameterFromModel('sdoHydraulicCylinder','Ac');
Ac.Value = 0.5;
simulator.Parameters = Ac;

Simulate the model.

sim_obj = sim(simulator);

The specified signal Pressures is logged during simulation in the LoggedData property of
sim_obj. After simulation, the sim command restores model parameter and model signal logging
changes. If you want to preserve your changes, specify the RestoreSettingsAfterSim argument
as false.

sim_obj = sim(simulator,'RestoreSettingsAfterSim',false);

See Also
sdo.optimize | fastRestart | find | who | sdo.OperatingPointSetup

Topics
“Design Optimization to Meet Step Response Requirements (Code)”
“Design Optimization to Meet a Custom Objective (Code)”
“Set Model to Steady-State When Estimating Parameters (Code)”

3 Methods and Apps

3-134

who
Class: sdo.SimulationTest
Package: sdo

List logged data names

Syntax
names = who(sim_obj)

Description
names = who(sim_obj) returns a list of logged data names.

Input Arguments
sim_obj

sdo.SimulationTest object

Output Arguments
names

Cell array of logged data set names.

Examples
List logged data set names.

Log model signals.

Pressures = Simulink.SimulationData.SignalLoggingInfo;
Pressures.BlockPath = 'sdoHydraulicCylinder/Cylinder Assembly';
Pressures.OutputPortIndex = 1;

Store logged signal data.

simulator = sdo.SimulationTest('sdoHydraulicCylinder');
simulator.LoggingInfo.Signals = Pressures;
simulator = sim(simulator);

Find logged data sets.

names = who(simulator);

See Also
sdo.optimize | find | sim | fastRestart

 who

3-135

Topics
“Design Optimization to Meet Step Response Requirements (Code)”
“Design Optimization to Meet a Custom Objective (Code)”

3 Methods and Apps

3-136

sdoupdate
Update model containing Signal Constraint block

Syntax
sdoupdate(modelname)
sdoupdate(modelname,noprompt)
session = sdoupdate(modelname)

Description
sdoupdate(modelname) replaces Signal Constraint blocks in a Simulink model with equivalent
blocks from the Signal Constraints library. If the model has an associated response optimization
project, this command replaces it with a session that you can use with the Response Optimizer,
after prompting you to update. The model must be open.

sdoupdate(modelname,noprompt) updates the response optimization project without prompting
you.

session = sdoupdate(modelname) returns the Response Optimizer session.

Input Arguments
modelname

Simulink model name, specified as a character vector or string. For example, 'sldo_model1'.

noprompt

Whether to prompt you about updating the response optimization project (false) or not (true).

Default: false

Output Arguments
session

Response Optimizer session name.

Version History
Introduced in R2011b

See Also
Response Optimizer

 sdoupdate

3-137

Sensitivity Analyzer
Explore design space and determine most influential model parameters

Description
The Sensitivity Analyzer app lets you explore the design space and determine the most influential
Simulink model parameters using design of experiments, Monte Carlo simulations, and correlation
analysis.

Using this app, you can:

• Select and sample parameters using design of experiments.
• Specify design requirements.
• Perform Monte Carlo simulations to evaluate the design requirement at selected parameter

values.
• Analyze and visualize model sensitivity to parameters.

You can accelerate evaluation of design requirements using parallel computing and Simulink fast
restart.

3 Methods and Apps

3-138

Open the Sensitivity Analyzer App
• Simulink Toolstrip: On the Apps tab, under Control Systems, click the Sensitivity Analyzer.
• MATLAB command prompt: Enter ssatool('modelname').

Examples
• “What is Sensitivity Analysis?”
• “Identify Key Parameters for Estimation (GUI)”
• “Design Exploration Using Parameter Sampling (GUI)”
• “Generate Parameter Samples for Sensitivity Analysis”
• “Evaluate Design Requirements”
• “Analyze Relation Between Parameters and Design Requirements”
• “Interact with Plots in the Sensitivity Analyzer”

 Sensitivity Analyzer

3-139

Programmatic Use
ssatool('modelname') opens the Sensitivity Analyzer app and creates a new session. The model
must be open or on the MATLAB path.

ssatool(ssasession) opens a previously saved Sensitivity Analyzer app session.

Version History
Introduced in R2016a

See Also
sdo.evaluate

Topics
“What is Sensitivity Analysis?”
“Identify Key Parameters for Estimation (GUI)”
“Design Exploration Using Parameter Sampling (GUI)”
“Generate Parameter Samples for Sensitivity Analysis”
“Evaluate Design Requirements”
“Analyze Relation Between Parameters and Design Requirements”
“Interact with Plots in the Sensitivity Analyzer”

3 Methods and Apps

3-140

	Blocks
	Adaptive Lookup Table (1D Stair-Fit)
	Adaptive Lookup Table (2D Stair-Fit)
	Adaptive Lookup Table (nD Stair-Fit)
	Check Against Reference
	Check Custom Bounds
	Check Step Response Characteristics
	CRMS
	DRMS
	Signal Constraint

	Classes
	param.Continuous
	param.Discrete
	param.State
	sdo.AnalyzeOptions
	sdo.EvaluateOptions
	sdo.Experiment
	sdo.OperatingPointSetup
	sdo.OptimizeOptions
	sdo.ParameterSpace
	sdo.requirements.BodeMagnitude
	sdo.requirements.ClosedLoopPeakGain
	sdo.requirements.FunctionMatching
	sdo.requirements.GainPhaseMargin
	sdo.requirements.MonotonicVariable
	sdo.requirements.PhasePlaneEllipse
	sdo.requirements.PhasePlaneRegion
	sdo.requirements.OpenLoopGainPhase
	sdo.requirements.PZDampingRatio
	sdo.requirements.PZNaturalFrequency
	sdo.requirements.PZSettlingTime
	sdo.requirements.RelationalConstraint
	sdo.requirements.SignalBound
	sdo.requirements.SignalTracking
	sdo.requirements.SingularValue
	sdo.requirements.SmoothnessConstraint
	sdo.requirements.StepResponseEnvelope
	sdo.SampleOptions
	sdo.SimulationTest
	sdo.SystemLoggingInfo

	Methods and Apps
	copy
	sdo.requirements.BodeMagnitude.evalRequirement
	sdo.requirements.ClosedLoopPeakGain.evalRequirement
	sdo.requirements.FunctionMatching.evalRequirement
	sdo.requirements.GainPhaseMargin.evalRequirement
	sdo.requirements.MonotonicVariable.evalRequirement
	sdo.requirements.OpenLoopGainPhase.evalRequirement
	sdo.requirements.PhasePlaneEllipse.evalRequirement
	sdo.requirements.PhasePlaneRegion.evalRequirement
	sdo.requirements.PZDampingRatio.evalRequirement
	sdo.requirements.PZNaturalFrequency.evalRequirement
	sdo.requirements.PZSettlingTime.evalRequirement
	sdo.requirements.RelationalConstraint.evalRequirement
	sdo.requirements.SignalBound.evalRequirement
	sdo.requirements.SignalTracking.evalRequirement
	sdo.requirements.SingularValue.evalRequirement
	sdo.requirements.SmoothnessConstraint.evalRequirement
	sdo.requirements.StepResponseEnvelope.evalRequirement
	get
	set
	getbounds
	sdo.requirements.PZDampingRatio.getOvershoot
	sdo.requirements.PZDampingRatio.setOvershoot
	makedist
	sdo.analyze
	sdo.evaluate
	sdo.Experiment.createSimulator
	sdo.Experiment.getValuesToEstimate
	sdo.Experiment.prepareToDeploy
	sdo.Experiment.setEstimatedValues
	sdo.Experiment.updateIOData
	sdo.getModelDependencies
	sdo.getParameterFromModel
	sdo.getStateFromModel
	sdo.getValueFromModel
	sdo.scatterPlot
	param.Continuous.isreal
	Parameter Estimator
	Response Optimizer
	sdo.ParameterSpace.addParameter
	sdo.ParameterSpace.removeParameter
	sdo.ParameterSpace.setDistribution
	sdo.setCheckBlockEnabled
	sdo.setValueInModel
	sdo.optimize
	sdo.sample
	sdo.SimulationTest.fastRestart
	sdo.SimulationTest.find
	sdo.SimulationTest.prepareToDeploy
	sdo.SimulationTest.sim
	sdo.SimulationTest.who
	sdoupdate
	Sensitivity Analyzer

